透過您的圖書館登入
IP:13.59.18.83
  • 學位論文

以Smith-type補償器架構對含有反向應答及時延之穩定/積分程序進行PID控制器設計

PID Controller Design Based on Smith-type Compensator for Stable/Integrating Processes with Inverse Response and Time Delay.

指導教授 : 鄭智成

摘要


在化學工廠裡經常會面對到具有反向應答及時間遲延之動態應答程序,往往無法達到較為理想之控制性能。因此針對於此問題本研究提出一設計概念及一PID控制器調諧法,對於含有非最小相位動態應答程序設計ㄧSmith-type補償器控制架構,運用此控制架構可將非最小相位動態部分排除於回饋環路中,而以此控制架構須將程序模式分解為最小相位及非最小相位動態兩部分,本研究提出以直接分解法進行模式分解設計控制器並與全通分解法進行模式分解設計控制器做系統化的比較探討,而由系統應答結果分析顯示以直接分解法進行模式分解設計控制器較能於控制性能與系統韌性間得到較好的取捨。 然後將Smith-type補償器控制架構轉換為傳統回饋控制架構並利用Maclaurin級數展開將所對應的控制器近似為一PID控制器,因而可得到一PID控制器調諧方法,藉由PID可調整參數 的微調可於控制性能與系統韌性間進行選擇,並且對於回饋控制系統進行穩定性分析,最後進行幾個實例應用模擬,以驗證本研究所設計之PID控制器調諧方法具有優越的控制性能及系統韌性。

並列摘要


In chemical industry, it is general to encounter great difficulties in process control when the system contains inverse response and time delay. To this circumstance, this thesis presents the design concepts and tuning rules for PID controller for stable/integrating processes with inverse response and time delay. The control system design is based on a Smith-type compensator for non-minimum phase (NMP) dynamics, which aims to remove these elements from the feedback loop. In this control scheme, it is necessary to factorize the process model into minimum phase and non-minimum phase portions. Different factorization methods are thus investigated and compared, and it turns out that the system resulted from direct factorization (DF) method can achieve better tradeoff between control performance and system robustness. Then, the equivalent feedback controller for the proposed configuration is approximated as a traditional PID controller by Maclaurin-series approach. The analytical tuning rules for PID parameters are developed where a single tuning controller parameter can be adjusted to make desired tradeoff between control performance and system robustness. Furthermore, the analysis of robust stability is provided. Several simulation examples have demonstrated the superiority of the proposed control design method.

參考文獻


[1] G. Stephanopoulos, Chemical Process Control: An Introduction to Theory and Practice, Prentice-Hall: Englewood Cliffs, NJ, 1984, pp. 391-393.
[3] W. D. Zhang, X. M. Xu and Y. S. Sun, "Quantitative performance design for inverse-response processes," Ind. Eng. Chem. Res., vol. 39, 2000, pp. 2056-2061.
[4] K. T. V. Waller and C. G. Nygårdas, "On inverse response in process control," Ind. Eng. Chem. Fundam, vol. 14, 1975, pp. 221-223.
[5] J. G. Ziegler and N. B. Nichols, "Optimum settings for automatic controllers," Trans. ASME, vol. 64, 1942, pp. 759-768.
[6] W. L. Luyben, "Tuning proportional-integral controllers for processes with both inverse response and deadtime," Ind. Eng. Chem. Res., vol. 39(4), 2000, pp. 973-976.

延伸閱讀