透過您的圖書館登入
IP:3.138.174.174
  • 學位論文

運用超音波造霧及慣性衝擊系統進行粒徑篩選之研究

Particle Separation Process Using Ultrasonic Atomizer and Impactor

指導教授 : 蘇春熺

摘要


本研究以自製微霧冷凝分離系統、微霧慣性分離系統,將超音波霧化(ultrasonic atomization)之效果應用於微粒分離上,研究關於如何分離得取次微級或奈米級粒子。過程以氧化鋅粉末為實驗對象,將此粉末經球磨後再藉由自行設計組裝之微霧冷凝分離系統、微霧慣性分離系統做分離動作。而此分離動作是利用超音波之霧化效應,將混合後之懸浮液霧化後再藉由風扇、幫浦的驅動力將該微霧所包含之微粒送進衝擊系統(impaction)內,且利用微粒的慣性效果將微粒做進一部分離。 經由本實驗可證實藉由震盪器產生高頻率振波的表面聚焦作用,使液體形成的霧氣可以帶起溶液中的微粒且可達到分離的目的;實驗經衝擊器分離後所得氧化鋅最小粒徑為68nm且其各層粒徑分佈趨勢與微粒之慣性有關;實驗得知改變入口流速與噴流口直徑對衝擊器的篩選效果影響甚大。

關鍵字

氧化鋅 超音波霧化 衝擊器 球磨

並列摘要


This study aims at exploring a laboratory-made micro-fog condensing system and micro-fog impactor which applies the benefits of vibrating foggy effect onto separation of particles. This work also discusses how to process a better separation way in order to get sub-micro or nanoscaled particles. The experiment uses ball-milled ZnO powders as the test sample. This separation mechanism is achieved through the formation of fog created using ultrasonic vibrator. With the aid of fanning and pump, the fog will pass through into impactor, used inertia of particles to separate micro-fog. The ultrasonic atomization is proven to be able to separate micron and nanoscaled particle from aqua. The smallest particle size is 68nm from the experiment and the tendency of separation was the same with little particles inertia. They most influenced with the efficiency of separation in the impactor that changing the entrance of flow velocity and the jet flow diameter by the experiment.

並列關鍵字

ZnO ultrasonic atomization impactor ball-milled

參考文獻


Tyndall, J., Phil. Mag., 37, 384 (1869).
Rayleigh, Lord, Phil. Mag., 47, 375 (1899).
[5] Aitken, J., Trans. Roy. Soc. Edinb., 30, P.337(1880)
Aitken, J., Collected Scientific Papers, C. G. Knott (Ed.), Cambridge University Press, Cambridge (1923).
[6] Millikan, R. A., The Electron, The University of Chicago Press, Chicago (1917)

被引用紀錄


莊燿坤(2009)。過氧化氫蒸汽生成系統之進液料機構〔碩士論文,國立臺北科技大學〕。華藝線上圖書館。https://doi.org/10.6841/NTUT.2009.00467

延伸閱讀