透過您的圖書館登入
IP:18.222.200.143
  • 學位論文

運用計算流體力學模擬與微機電製程技術於微粒子分離和收集應用之微流晶片研發

Using CFD Simulations and MEMS Fabrication Technology to Develop Microfluidic Chips for Micro-particle Separation and Collection

指導教授 : 楊安石
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


半導體產業的蓬勃發展使微機電製程技術逐漸成熟,並且運用於各相關領域之研究,尤其是生醫領域已應用相關製程技術將製藥、檢測等設備微小化。本文即設計並製作出一個微型分離晶片,並以不同尺寸的螢光粒子測試分離的有效性,探討不同濃度之樣本溶液及流量操作條件對於分離效率的影響。研究先應用計算流體力學軟體CFD-ACE+模擬分離機制及瞭解內部流場現象,並導引可分離不同微粒微分離晶片的設計。實驗量測顯示樣本濃度為10⁴particles/ml且流量操作條件為Re= 1時,對於小顆螢光粒子的分離可達到83%,且在收集分離後含有大顆螢光粒子之樣本與原始樣本比較可達成約5.6倍的樣本純化效果。

並列摘要


The semiconductor industry has facilitated advancement of the MEMS fabrication technology for various applications. Specially, many researchers in the biomedical area have realized miniaturization of pharmaceutical and detection devices. This study aims to design and fabricate microfluidic chips for separation of cells, as well as to test the effectiveness of chips by fluorescent particles at different sizes. We also investigated the separation efficiency under various operating conditions by varying the sample particle density and flowrate. In the analysis, the commercial computational fluid dynamics (CFD) software CFD-ACE +® was employed to simulate the separation mechanism and better understand the internal flowfield process for guiding the microfluidic chip design. Considering the concentration of 10⁴ particles/ml and at Re= 1, the experimental results indicated a separation outcome of 83% for the small fluorescent particles with 10 μm in diameter, as well as a purification ratio of 5.6 for the collected sample containing large (25-μm) fluorescent particles as compared to the original solution.

並列關鍵字

Microfluidics Cell seperation CFD simulations MEMS

參考文獻


[1] Wlodkowic, D. and Cooper, J.M. Microfabricated analytical systems for integrated cancer cytomics. Anal Bioanal Chem 398:193–209, 2010
[2] 王凱正、李定智。流體聚焦微管道之流場及出口分流率控制與微粒分離之研究,國立成功大學航空太空工程研究所碩士論文,民國九十七年。
[5] Yager, P., Edwards, T., Fu, E., Helton, K., Nelson, K., Tam, M.R. and Weigl, B.H. Microfluidic diagnostic technologies for global public health. Nature 442 (7101), 412-418, 2006
[8] Manz, A., Graber, N. and Widmer, H.M. Miniaturized total chemical-analysis systems - a novel concept for chemical sensing. Sensors and Actuators B-Chemical, 1, 244-248., 1990
[9] Whitesides, G.M. The origins and the future of microfluidics.Nature 442(7101):368–373, 2006

延伸閱讀