透過您的圖書館登入
IP:18.222.194.128
  • 學位論文

二氧化矽改質二氧化鈦粉體製備分析與染料敏化太陽能電池之應用

Preparation and Characterization of Silica Modified Titanium Dioxide for Dye-sensitized Solar Cells

指導教授 : 蘇昭瑾

摘要


本文研究目的是期望透過溶膠-凝膠法所製備之小粒徑二氧化矽與二氧化鈦結合,製備出二氧化矽/二氧化鈦混合粉末,接著使用由二氧化矽/二氧化鈦混合粉體去製備染料敏化太陽能電池。實驗主要分為三部份,第一部分為利用溶膠-凝膠法製備奈米二氧化矽粉體;第二部份實驗為製備二氧化矽改質二氧化鈦粉體;第三部份為染料敏化太陽能電池的製備與光電轉換效率表現分析。 在第一部分實驗中,主要以溶膠-凝膠法製程來製備奈米級二氧化矽顆粒,實驗中以四乙基矽氧烷( Tetraethoxysilane,TEOS )為二氧化矽前驅物,並以氨水為鹼性觸媒,乙醇為溶劑,同時進行水解及縮合反應來形成奈米級二氧化矽顆粒。透過掃描式電子顯微鏡( SEM )可發現,當提升其反應溫度可發現顆粒大小隨溫度上升而下降;將反應時間控制為50分鐘,當溫度由 40 °C 升高至 60 °C 時,粒徑大小由55 nm降至31 nm,其結果顯示隨著反應溫度上升,所製得之二氧化矽顆粒粒徑越小。接著透過X-射線繞射儀( XRD )來進行結晶性質分析時,其結果顯示二氧化矽粉體為無定型結晶型態粉末。 第二部份為利用第一部分製得之小粒徑二氧化矽來改質二氧化鈦,利用水熱法將二氧化矽與二氧化鈦反應,以製得小粒徑的二氧化矽/二氧化鈦混合粉體。在本實驗中,以鈦、矽元素比例為9比1來製備二氧化矽/二氧化鈦混合粉體。透過掃描式電子顯微鏡( SEM )可發現二氧化矽/二氧化鈦混合粉體其粒徑約在 10~20 nm 範圍;由 XRD 分析其結晶相,發現皆為銳鈦礦相二氧化鈦特徵峰;再經由X光螢光分析儀( XRF )確認粉末中所含鈦、矽元素比例為9比1。 第三部份則利用實驗所製備出的二氧化矽改質二氧化鈦奈米粉體進行染料敏化太陽能電池的製備與組裝,將第二部份所製得之二氧化矽/二氧化鈦混合粉體加入乙烯丙酮、triton X-100、聚乙二醇和去離子水製成電極塗料,將塗料均勻塗佈在導電玻璃上並與銳鈦礦二氧化鈦粉末所製備之電極作比較。由實驗結果顯示,銳鈦礦二氧化鈦粉末所製備得之染料敏化太陽能電池之光電轉換效率較佳,當其厚度為20μm時,其光電轉換效率可達到 7.3 % ,而實驗中自製二氧化矽/二氧化鈦混合粉體(TS-6050)所製備染料敏化太陽能電池工作電極,當其厚度為20μm時,其光電轉換效率僅為 5.9 %,比銳鈦礦二氧化鈦所製備的染料敏化太陽能電池效率較低,推測其可能原因為二氧化矽在高溫鍛燒時,有可能再重新結晶,影響其結晶大小,進而影響染料吸附量及電子傳輸路徑而造成效率較差。

並列摘要


This study aims to prepare nanosilica (SiO2) via sol-gel method for the application of working electrode in dye-sensitized solar cells. The study is divided into three parts. First, sol-gel technique was implemented to synthesize nanosilica powder. We used tetraethoxysilane (TEOS) as the precursor of silica, ammonia as catalyst and ethanol as solvent to prepare SiO2 sols. Secondly, mixed powder was prepared by blending nanosilica powder with TiO2 precursor followed by hydrothermal treatment. Thirdly, the performance of dye sensitive solar cells with mixed-oxide electrode fabricated by TiO2 and nanosilica in the wt. ratio of 9:1 was investigated. Scanning electron microscopy (SEM) results show that the particle size of nanosilica was reduced from 55 to 31 nm upon increasing the reaction temperature from 40 to 60 °C. No characteristic peak of silica was found in X-ray diffraction (XRD) spectra reveals that as-prepared nanosilica was amorphous. In the XRD spectra, all peaks were assigned to anatase TiO2. Both energy dispersive X-ray spectrometer and X-Ray Fluorescence Spectrometer(XRF)were applied for elemental analysis. Both instruments showed the consistent results of 9 to 1 ratio for titanium and silicon. Dye-sensitized solar cells with photoelectrodes fabricated by the mixed-powder (titania/silica) and pure TiO2 were investigated. The result shows that the conversion efficiency of the cell with pure anatase TiO2 as working electrode is 7.3% whereas the cell with the mixed-TiO2-SiO2 as working electrode performs lower conversion efficiency of 5.9%.

參考文獻


[1] T.-V. Nguyen, H.-C. Lee, M. Alam Khan, O.B. Yang, "Electrodeposition of TiO2/SiO2 Nanocomposite for Dye-sensitized solar cell", Solar Energy 81 (2007) 529.
[2] S. Nakade, Y. Makimoto, W. Kubo, T. Kitamura, Y. Wada, S. Yanagida, "Roles of Electrolytes on Charge Recombination in Dye-Sensitized TiO2 Solar Cells (2): The Case of Solar Cells Using Cobalt Complex Redox Couples", J. Phys. Chem. B 109 (2005) 3488.
[4] K.Y. Jung, S.B. Park, "Enhanced Photoactivity of Silica-embedded Titania Particles Prepared by Sol-gel Process for the Decomposition of Trichloroethylene", Appl. Catal. B 25 (2000) 249.
[5] G.A. Zacheis, K.A. Gray, P.V. Kamat, "Radiation Induced Catalytic Dechlorination of Hexachlorobenzene on Oxide Surfaces", J. Phys. Chem. B 105 (2001) 4715.
[6] M. Gratzel, "Photoelectrochemical cells", Nature 414 (2001) 338.

被引用紀錄


李訓賓(2011)。以鑭系羧酸鹽添加劑摻合礦物粉體對聚丙烯的熱變化性質之研究〔碩士論文,國立臺北科技大學〕。華藝線上圖書館。https://doi.org/10.6841/NTUT.2011.00654
楊巧鈺(2013)。回收的稀土元素應用於染料敏化太陽能電池之研究〔碩士論文,國立臺北科技大學〕。華藝線上圖書館。https://www.airitilibrary.com/Article/Detail?DocID=U0006-1908201312071100

延伸閱讀