為了獲得到更好之乘坐舒適性與車輛操控性,本研究針對半主動懸吊系統,進行控制策略之研究,以兼具乘坐舒適性與車輛操控性為目標。利用Matlab / Simulink建構出四分之一車非線性之麥花臣式懸吊系統模型與包含限制阻尼力與致動器動態之阻尼器模型。並採用四分之一車線性模型,搭配系統判別所得到之參數與致動器之動態響應,設計控制器與卡爾曼估測器。本研究將發展二控制策略,包含在考慮半主動懸吊系統之物理限制,推導受限最佳化控制策略;以及利用車身加速度與輪胎變形量為滑動平面之滑動模式控制策略。最後利用非線性懸吊系統模型,進行電腦模擬分析,驗證所提出之控制策略,在不同型態路面輸入下之性能表現。
In order to improve the ride quality and road handling of vehicle, two control strategies are proposed for semi-active suspension. First, a nonlinear Macpherson suspension model, which consists of a quarter car suspension and damper model, is established using Matlab/Simulink. A linear identified quarter car model with actuator dynamics is then utilized to design the Kalman filter and control strategies. The proposed control strategies include a constrained input optimal controller and sliding mode control (SMC). The sprung mass acceleration, suspension stroke, and tire deflection are employed as the cost function to design the optimal controller. The sprung mass acceleration and tire deflection is used as the sliding surface for designing SMC. Finally, the performance of the control strategies is evaluated using nonlinear suspension model under different road profiles.