透過您的圖書館登入
IP:18.191.216.163
  • 學位論文

穿透式以及反射式低色散波板之多層膜簡化設計

Simplified thin film design for transmission type and reflection type achromatic waveplates

指導教授 : 任貽均
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


本研究是探討利用非均向薄膜搭配均向薄膜簡化設計出穿透式以及反射式低色散波板。這種簡化設計可以使製程上更加容易。 穿透式波板則是模擬以堆疊13層薄膜突破過往研究需要堆疊50層以上薄膜的高層數限制,以高低折射率交替之週期性對稱膜堆(ABA)為設計主軸,並且探討AB之間高低折射率差與其非均向層雙折射率對相位變化的影響進而設計出低射散且少層數的廣波域波板。 而反射式波板則是穿透式波板的延伸,利用對稱膜堆搭配銀的奈米均向薄膜和折射率匹配層為主要結構進行模擬,而對稱膜堆ABA需至少有一層為非均向薄膜 ,並調整其厚度與折射率設計出能在止帶與通帶皆可使用的消色散反射式波板。

並列摘要


In this study, transparent-type and reflective-type achromatic waveplate are designed by a symmetrical film stack. The structure of transparent-type achromatic waveplate is (ABA)n, and the structure of reflective-type achromatic waveplate is (index matching layers (IMLs)/(ABA)n/Ag). A and B are thin films of different index. The number of thin film layers of transparent-type achromatic waveplate can be simplified by arranging a high-index contrast of layers A and B in this study. The number of layers is 13 layers. Birefringence and high contrast of refractive index are investigated for transparent-type achromatic waveplate. Reflective-type achromatic waveplate is designed by the structure (IMLs)/(ABA)n/Ag). IMLs is very important for the design. The material of the IMLs is selected according to the equivalent refractive index E of symmetrical thin film stack in the passband. The symmetrical film stack(ABA) comprises at least one anisotropic thin film. Additionally, selecting the birefringence and thickness of the thin film allows for the design of uniform phase retardation in both the passband and stopband.

參考文獻


[1] N. O. Young and J. Kowal, “Optically active fluorite films,” Nature, vol. 183, pp. 104-105, 1959.
[2] T. Motohiro and Y. Taga, “Thin film retardation plate by oblique deposition,” Applied optics, vol. 28, pp. 2466-2482, 1989.
[4] M. C. Simon, and L. I. Perez, “Reflection and transmission coefficients in uniaxial crystals,” Journal of Modern Optics, vol. 38, pp. 503-518, 1991.
[6] I. J. Hodgkinson and A. Lakhtakia, “On the Motohiro-Taga interface for biaxial columnar media,” Optical Engineering, vol. 37, pp. 3268-3271, 1998.
[7] G. Y. Slepyan and A. S. Maksimenko, “Motohiro-Taga interface in sculptured thin films- absence of Bragg phenomna,” Optical Engineering, vol. 37, pp. 2843-2847, 1998.

延伸閱讀