透過您的圖書館登入
IP:18.223.32.230
  • 學位論文

鋨氧化物/鉑/鋨鉑氯化物與釕氧化物/鉑/銥氯化物與鉑/銅赤血鹽薄膜修飾電極的電化學特性以及電催化反應研究

The Characterization and Electrocatalytic Properties of Mixed-valent Osmium Oxide /Hexachloroplantinate / Platinum Film and Ruthenium Oxide / Hexachloroiridate / Platinum Film and Copper Hexacyanoferrate / Platinum Film Modified Electrodes

指導教授 : 陳生明

摘要


本研究主要分為三部分討論。鋨氧化物/鉑/鋨鉑氯化物薄膜,是在酸性溶液中混合Os3+ 和 PtCl62–透過循環伏安法所製備而成。本實驗使用電化學石英晶體微天平(EQCM)、掃描式電子顯微儀(SEM)及循環伏安法來研究鋨氧化物/鉑/鋨鉑氯化物薄膜的沉積與薄膜成長之機制及電化學特性。鋨氧化物/鋨鉑氯化物薄具有一對氧化還原對的特性。並且鋨氧化物/鉑/鋨鉑氯化物薄膜對TCA、NAD+、N2O具有電催化還原活性。 釕氧化物(RuOx),釕氧化物/銥氯化物(RuOx /IrCl6),鉑,釕氧化物/鉑/銥氯化物(RuOx /IrCl62-/Pt) 薄膜,在酸性溶液中可經由混合Ru3+、IrCl62– 和 PtCl62–或單獨各別透過循環伏安法所製備而成。本實驗使用電化學石英晶體微天平(EQCM)、掃描式電子顯微儀(SEM)及循環伏安法來研究各薄膜的沉積與薄膜成長之機制及電化學特性。並且各薄膜對NaAsO2(As(III)), methanol 和O2有電催化還原活性。 鉑/銅赤血鹽混層薄膜,在酸性溶液中可經由Cu2+、PtCl62–和Fe(CN)63–,以二步驟方式透過循環伏安法所製備而成。本實驗使用電化學石英晶體微天平(EQCM)及循環伏安法來研究此混層薄膜的沉積與薄膜成長之機制及電化學特性。本研究使用了SEM來觀察各薄膜表面的影像。並且透過循環伏安法來研究此混層薄膜對NH2OH, N2H4, and S2O32-的電催化氧化還原活性。

並列摘要


Osmium oxide/hexachloroplatinate (OsPtCl6), osmium oxide and platinum mixed films have been prepared using repetitive cyclic voltammetry. The deposition process and the films' electrocatalytic properties have been investigated. The cyclic voltammograms recorded the deposition of the mixed osmium hexachloroplatinate (OsPtCl6), osmium oxide and platinum films directly from the mixing of Os3+ and PtCl62– ions from the acidic aqueous solutions. The electrochemical quartz crystal microbalance, cyclic voltammetry, and SEM were used to study the growth mechanism of the mixed of osmium hexachloroplatinate (OsPtCl6), osmium oxide and platinum films. The osmium hexachloroplatinate (OsPtCl6) and osmium oxide films exhibited one redox couple. Electrocatalytic reactions of TCA(trichloroacetic acid), NAD+ and N2O were carried out by the mixed osmium hexachloroplatinate, osmium oxide and platinum films. Ruthenium oxide/hexachloroiridate/platinum hybrid films have been prepared using repetitive cyclic voltammetry. The deposition process and the films' electrocatalytic properties have been investigated. The cyclic voltammograms recorded the deposition of the ruthenium oxide(RuOx), Ruthenium oxide/hexachloroiridate(RuOx /IrCl6), platinum(Pt) films have been prepared, and ruthenium oxide/hexachloroiridate/platinum(RuOx /IrCl62-/Pt) hybrid films directly preparation from the mixing of Ru3+, IrCl62–and PtCl62– ions from the acidic aqueous solutions. The electrochemical quartz crystal microbalance, cyclic voltammetry, and SEM were used to study the growth mechanism of the hybrid of ruthenium oxide(RuOx), ruthenium oxide/hexachloroiridate(RuOx /IrCl6), platinum(Pt), and ruthenium oxide/hexachloroiridate/platinum (RuOx/IrCl62-/Pt) hybrid films. Electrocatalytic reactions of NaAsO2(As(III)), methanol and O2 were carried out by the ruthenium oxide(RuOx), ruthenium oxide/hexachloroiridate(RuOx/IrCl6), platinum(Pt), and ruthenium oxide/hexachloroiridate/platinum (RuOx/IrCl62-/Pt) hybrid films. Copper hexacyanoferrate and platinum hybrid films have been prepared using repetitive cyclic voltammetry. The deposition process and the films' electrocatalytic properties have been investigated. The cyclic voltammograms recorded the deposition of the copper hexacyanoferrate and platinum hybrid films have been prepared. The electrochemical quartz crystal microbalance, cyclic voltammetry, and SEM were used to study the deposition and growth mechanism of the copper hexacyanoferrate film and copper hexacyanoferrate /platinum hybrid films. The copper hexacyanoferrate /Pt hybrid films showed only the peak potentials of platinum component that demonstrates a proton effect in acidic aqueous solution but the redox couple of copper hexacyanoferrate is cation dependent but pH independent. Electrocatalytic reactions of NH2OH, N2H4, and S2O32- were carried out by the copper hexacyanoferrate / platinum hybrid films.

參考文獻


1. P. Saber, W. Lund, Talanta, 29(1982)457.
7. Martin, C. R.; Rhoades, T. A.; Ferguson, J. A. Anal. Chem.,54(1982)1639.
8. Cha, C. S.; Chen, J.; Liu, P. F. Electroanal. Chem.,345(1993), 463.
9. L. M. Siperko and T. Kuwana, J. Electrochem. Soc., 130 (1983) 396.
10. S.-M. Chen, C.-M. Chan, J. Electroanal. Chem., 543 (2003), 161.

延伸閱讀