透過您的圖書館登入
IP:3.129.210.17
  • 學位論文

軸向磁力軸承最佳化設計與驗證

Design Optimization and Experimental Verification of an Axial Magnetic Bearing

指導教授 : 楊勝明
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


轉子磁懸浮系統通常需要徑向與軸向磁力使轉子懸浮於氣隙中。傳統軸向磁力軸承結構由上下兩組電磁鐵中夾一組轉子碟盤所構成,由於電磁鐵加上電流後只會產生吸力,故必須分別控制兩組線圈電流以維持轉子在中心工作點位置。此磁力軸承因轉子碟盤較大,所以組裝較為困難,當轉子稍微傾斜也較容易撞到定子。本論文提出一種新型磁力軸承設計,定子結構包含定子線圈與永久磁鐵,轉子部分則由軸與導磁碟盤所組成。此磁力軸承只需單組線圈控制,當激磁繞組加入正電流時轉子會往正方向移動,反之加入負電流則往負方向移動。因為轉子碟盤較小,運作時不會與定子相互碰撞,並且體積較傳統軸承小。本論文使用有限元素分析及田口法設計磁力軸承,對外徑及長度在固定的條件下,最佳化設計使軸承在額定電流內產生最小軸向力20N,以及達到最高效率。除了理論分析設計外,建立一套軸向力量測機構以驗證此設計之軸向磁力軸承性能。

並列摘要


The rotor suspension system generally utilizes radial and axial magnetic force for making rotor to suspend in the air gap. The structure of the conventional axial magnetic force bearing consists of an upper electromagnet, a lower electromagnet, and a rotor disk that clamped between the upper electromagnet and the lower electromagnet. It should control two groups of coil current individually to maintain the rotor in the position of the central working point, because the electromagnets only can generate attraction. The rotor disk of the magnetic force bearing is so lager that fabrication of the magnetic force bearing is more difficult. In addition, while the rotor slopes slightly, the rotor hits the stator easily. A novel magnetic bearing design proposed in the paper, wherein the structure of the stator includes stator coil and permanent magnet, and the rotor consists of a shaft and a permeability disk. The magnetic bearing is only controlled by single group of coil. When adding the positive current in the stator coil, the rotor moves in positive direction. On the other hand, when adding the negative current in the stator coil, the rotor moves in negative direction. Since the rotor disk is smaller, the rotor disk can not hit the stator in operating, and the volume of the magnetic bearing in the paper is smaller than the volume of conventional magnetic bearing. The Finite Element Analysis and Taugchi Method utilized to design magnetic bearing in the paper, under the condition that the out diameter and the length are both constant, the optimal design makes the bearing to generate the lowest axial force 20 N in the rated current and achieve the best efficiency. Besides theory Analysis design, it established an axial measure mechanical for verifying the performance of the axial magnetic bearing performance of this design.

參考文獻


[26]林政良,具單一組線圈之永磁同步自軸承馬達研製,碩士論文,淡江大學機械工程研究所,台北,1997。
[31]郭進祥,田口品質參數水準最佳化,皮托科技股份有限公司。
[3]K. Hijikata, S. Kobayashi, M. Takemoto, Y. Tanaka, A. Chiba and T. Fukao, “Basic characteristics of an active thrust magnetic bearing with a cylindrical rotor core,” IEEE Transactions on Magnetics, vol. 44, no. 11, Nov. 2008, pp. 4167-4170.
[4]K. Hijikata, M. Takemoto, S. Ogasawara, A. Chiba and T. Fukao, “Behavior of a novel thrust magnetic bearing with a cylindrical rotor on high speed rotation,” IEEE Transactions on Magnetics, vol. 45, no. 10, Oct. 2009, pp. 4617-4620.
[6]V. A. Oliveira, E .F. Costa and J .B. Vargas, “Digital implementation of a magnetic suspension control system for laboratory experiments,” IEEE Transactions on Magnetics, vol. 42, no. 4, Nov. 1999, pp. 315-322.

被引用紀錄


徐肇鴻(2014)。自軸承馬達搭配軸向磁力軸承之三軸磁懸浮控制系統研製〔碩士論文,國立臺北科技大學〕。華藝線上圖書館。https://doi.org/10.6841/NTUT.2014.00114
林金鵬(2012)。永磁交流自軸承馬達與軸向磁力軸承之系統整合研製〔碩士論文,國立臺北科技大學〕。華藝線上圖書館。https://doi.org/10.6841/NTUT.2012.00113

延伸閱讀