透過您的圖書館登入
IP:18.219.121.255
  • 學位論文

截短型Fibrobacter succinogenes 1,3-1,4-β-D- 葡聚醣水解酶突變種E85I的晶體結構

Crystal Structure of Truncated Fibrobacter succinogenes 1,3-1,4-β-D-glucanase Mutant E85I

指導教授 : 蔡麗珠

摘要


Fibrobacter succinogenes1,3-1,4-β-D-葡聚醣水解酶(Fsβ-glucanase、lichenase、EC 3.2.1.73)屬於醣苷水解酶第16號家族,它是一種存在於牛胃中的寄生細菌所分泌的酵素,能有效與特異性的水解穀物中的β-D-葡聚糖(β-D-glucan)或地衣聚醣(lichenan)中與β-1,3鍵連接之β-1,4的鍵結位置,而形成三至五個寡醣組成的最終產物。我們以懸滴蒸氣擴散法培養得到截短型1,3-1,4-β-D-葡聚醣水解酶突變種E85I的晶體,再利用X-ray繞射儀收集分析的數據得知空間族群(space group)為P3121的三方晶系(trigonal),三邊長為a = b = 69.6 Å和c = 97.4 Å ; 三夾角為α=β= 90˚和γ= 120˚,解析度為2.2 Å。此突變種E85I的蛋白質摺疊方式與野生種非常相似,具有β-三明治結構(jellyroll β-sandwich)。除了發現在胺基酸Asn164、Asn189、Gly222的位置有鈣離子和二個水分子形成八面體的幾何形狀外,在E85I突變種中還有另一個銫離子與胺基酸Ser155、Leu157和三個水分子形成三角型雙金字塔的鍵結。且發現位在凹槽面的四個 loops 有往外邊移動的現象,位於凹槽面活性區域內的胺基酸殘基Glu60也有移轉的現象。從動力學之數據結果得知,將帶有負電荷的麸胺酸換成非極性的異白胺酸,水解催化能力下降了約3倍,故經由此結構和動力學之數據得知Glu85扮演影響醣類催化功能的重要角色。

並列摘要


Fibrobacter succinogenes 1,3-1,4-β-D-glucanase (Fsβ-glucanase, EC 3.2.1.73) belongs to glycosyl hydrolases family 16. Fsβ-glucanase specifically hydrolyzes the β-1,4-glycosidic bonds when β-1,3-glycosidic linkages are located prior to β-1,4-glycosidic bond in lichenan or β-D-glucans. It has been suggested that the truncated Fsβ-glucanase could accommodate five glucose rings into its active site upon enzyme-substrate interaction and many residues involved with substrate binding. Glu85 was proposed to make stacked interaction with subunit +1 of carbohydrate substrate in our previous study of enzyme complex structure. Here we describe the mutant E85I crystal structure to a 2.2 Å resolution. The overall structure of E85I mutant was similar to the jellyroll β-sandwich structure of the wild type enzyme. One Ca2+ ion and one Cs+ ion were found on the surface of the E85I structure with six- and five- ligands, respectively. Further analysis of the E85I mutant structure revealed that the catalytic residue Glu60 shifted away because the loop located at the concave site moved approximately 2 Å from its position in the native enzyme complex. The E85I structure and kinetic data suggest that Glu85 plays an important role in catalytic function.

參考文獻


[1] Baker, J.R., Dong, S., and Pritchard, D. G. (2002). The hyaluronan lyase of Streptococcus pyogenes bacteriophage H4489A. Biochemical Journal. 365, p. 317-322.
[3] Fry, S.C., Smith, R.C., Renwick, K.F., Hodge, S.C., and Matthews, K.J. (1992). Xyloglucan endrotransglycosylase, a new cell wall-loosening activity from plants. Biochemical Journal. 282, p. 821-828.
[4] Lorences, E.P., and Fry,S.C. (1993). Xyloglucan oligosaccharides with at least two α-D-xylose residues act as acceptor substrates for xyloglucan endotransglycosylase and promote the depolymerisation of xyloglucan. Plant Physiolog. 88, p.105-112.
[5] Henrissat, B., Davies G. (1995). Structures and mechanisms of glycosyl hydrolases. Structure. 3, p. 853-859.
[6] Vallés,J., Malet, C., Bou, J., and Planas, A. (1996). A Specific chromophoric substrate for activity assays of 1,3-1,4-β-D-Glucan 4-glucanohydrolasas. Journal of Biotechnology. 48, p. 209-219.

被引用紀錄


孔慶宇(2009)。雙功能酵素1,3-1,4-β-D-葡聚醣水解酶與β-1,4-聚木醣酶 純化與特性分析〔碩士論文,國立臺北科技大學〕。華藝線上圖書館。https://doi.org/10.6841/NTUT.2009.00243

延伸閱讀