透過您的圖書館登入
IP:18.226.251.22
  • 學位論文

添加低碳數飽和碳氫化合物氣體於零價鐵流體化床處理氮氧化物之研究

Using Low Carbon Numbers Saturated Hydrocarbons Gas for Reduction of Nitrogen Oxide by Zero-Valent Iron Fluidized Bed

指導教授 : 陳孝行
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


本研究是添加正己烷(Hexane)氣體於零價鐵流體化床處理NOx之實驗,藉著五種反應因子(反應溫度、Hexane進流濃度、鐵粉添加量、流通量及氧氣進流濃度),探討對系統之操作時間及NO去除量之影響,由實驗結果推估其反應機制,並比較一氧化碳(CO)及正己烷(Hexane)加入零價鐵處理NO系統之去除效率。 以Hexane進流濃度1500ppm、鐵粉量為2.0g、流量為0.3L/min為例,當反應溫度由623K上升至773K時,其操作時間及NO去除量隨之增加;以反應溫度為773K、鐵粉量為2.0g、流量為0.3L/min為例,當Hexane進流濃度由1000ppm增加至2000ppm時,其操作時間及NO去除量變化不大,幾乎一樣,而操作時間及NO去除量比在無Hexane氣體存在下少,Hexane氣體進流濃度的改變對操作時間及NO去除量並無影響,經GC/MS分析得知,Hexane氣體消耗量約770~1170ppm。 鐵粉添加量及流通量的改變對操作時間及NO去除量皆有影響,隨著鐵粉量的增加,其操作時間及NO去除量也隨之增加;隨著流通量的增加,其操作時間及NO去除量隨之減少。因此對於不同反應溫度(723K、773K)所對應之WFe/F值(鐵粉添加量/流通量)而言,其操作時間均隨WFe/F值增加而延長,迴歸係數大於0.94之線性相關。以反應溫度773K為例,WFe/F值由0.63g•cm2•min/L增加至5.00 g•cm2•min/L時,其操作時間由2549秒增加至24784秒,操作時間延長了22235秒。由於WFe/F值計算非常方便,因此以WFe/F值做為零價鐵流體化床操作時間之設計參數應為可行。 經由XRD分析及GC/MS分析結果得知,主要的反應產物為Fe2C、FeCO3、Fe2O3及Fe3O4,因此可進一步確認Hexane、NO與ZVI之間的反應機制為3Fe+4NO→ Fe3O4+2N2、4Fe3O4+2NO→ 6Fe2O3+N2及3Fe3O4+C6H14→4Fe2C+FeCO3+7H2O+CO2,由反應機制得知,零價鐵與NO反應生成Fe3O4,在未加入Hexane氣體時,Fe3O4繼續與NO反應增加其操作時間及NO去除量,但加入Hexane氣體時,Fe3O4也會與Hexane反應,導致操作時間及NO去除量下降。

關鍵字

正己烷 零價鐵 流體化床 一氧化氮 XRD GC/MS

並列摘要


This research is to use Hexane gas for reduction of nitrogen oxide by zero-valent iron fluidized bed reactor. Five different parameters: temperature (623, 673, 723 and 773K), Hexane concentrations (0, 1000, 1500 and 2000ppm), ZVI dosages (0.5, 1.0 and 2.0g), flux (0.4, 0.6 and 0.8 L/cm2-min), and O2 concentrations (3, 5 and 7%) were tested in the fluidized bed reactor to study 400ppm of NO. Under the ZVI dosages of 2.0g at flux 0.6 L/cm2-min at the temperature 773K, when the Hexane concentration is increased to 1000ppm from 0, the capacity of ZVI for De-NO decreases to 25.49 from 39.42 mg-NO/g-Fe. The capacity of ZVI for De-NO is the same when Hexane concentration is 1000 ,1500 or 2000ppm. When temperature is increased from 623K to 773K with 1500ppm Hexane, the capacity of ZVI for De-NO increased to 26.04 from 2.01 mg-NO/g-Fe. As the results, the increase of temperature can make the capacity of ZVI for De-NO to increase, but the increase of Hexane concentration will not affect the capacity. The capacity of ZVI for De-NO and breakthrough time can be affected by both ZVI dosage and flux variation. A parameter ZVI weight/flux (WFe/F) was developed to assess the breakthrough time of NO removed by ZVI and higher breakthrough time can be measured from higher WFe/F value. XRD and GC/MS were conducted to analyze the crystal structure and reacted gas. Several elements were determined from the spectrum:Hexane, Fe0(ZVI), Fe2C, FeCO3, Fe2O3, and Fe3O4. There are three chemical mechanisms among ZVI, nitric oxide, and Hexane, (1) 3Fe+4NO→ Fe3O4+2N2 (2)4Fe3O4+2NO→ 6Fe2O3+N2 (3)3Fe3O4+C6H14→4Fe2C+FeCO3+7H2O+CO2. Last, compared with removal efficiency of CO/ZVI/NO and Hexane/ZVI/NO, we found that the ecffectiveness of removal efficiency of CO was better.

並列關鍵字

Hexane zero valent iron fluidized bed nitric oxide XRD GC/MS

參考文獻


[13] 行政院環境保護署,減量技術網頁。
[39] 鄭自祐,零價鐵流體化床處理一氧化氮之研究,碩士,國立台北科技大學環境規劃與管理研究所,2005。
[1] S.S. Chen, C.Y. Cheng, J.C. Chang, and C.H. Tang, "Mechanisms of NOx removal from flue gas by zero valent iron," Journal of the Air and Waste Management Association, vol.56, 2006, pp.869-875.
[2] S.S. Chen, C.Y. Cheng, C.C. Wei, and C.H. Tseng, "Simultaneous removal of NO and SO2 by high-temperature fluidized zero-valent iron processes," Journal of the Air and Waste Management Association, vol.57, 2007, pp.303-308.
[3] 張榕峻,應用還原性氣體於零價鐵填充床處理NOx之研究,碩士,國立台北科技大學環境規劃與管理研究所,2006。

延伸閱讀