透過您的圖書館登入
IP:3.137.172.68
  • 學位論文

以生物電紡技術製造多重中空管束支架並植入細胞作為神經導管的應用

Fabrication of cell-seeded tube-in-tube scaffold via bio electrospinning as possible NGC applications

指導教授 : 陳建中
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


本實驗以生物電氣紡絲技術,來發展一整合型的電紡架構,依據最佳神經再生導管模型,應用特殊之同軸雙成份紡口及旋轉收集器,製成具高順向度之多重中空纖維管束,使纖維具有高順向度、生物相容性及可分解性之多重中空纖維管束系統,並且加入PC12 cell及能促進神經細胞再生之神經生長因子(NGF),評估其在神經修補中,神經再生導管之功能,而多重管束可提供相當多倍數的面積以供更多的神經細胞之附著,中空纖維管束則能有效引導神經細胞之軸突觸手往正確的方向生長,以促進神經修復之品質與速度。 研究中以生物可吸收的材料、PLA(poly-lactic acid )及水溶性高分子PVP(Polyvinyl pyrrolidone)、PEG(Polyethylene glycol)、PEO(polyethylene oxide),做為神經導管的基材,成功地以Coaxial模頭製作出蕊鞘結構及中空纖維管束,其纖維直徑在50μm以內,並以不同的轉速收集,當轉速在15.6 m/s時可得到具有高順向排列特性的纖維薄膜,在生物電紡中加入PC12 cell,成功的經由電紡將細胞導入於PLLA的內管管束中,並在管內加入神經生長因子,並以螢光蛋白轉殖於細胞中,在螢光顯微鏡的觀察下可以看到在管內的細胞貼附於管壁內,並有軸突的生成,並且成功的利用具方向性的管壁引導軸突生長。 利用生物電紡加工方式,結合Coaxial模頭所製做出的中空及雙層蕊鞘結構纖維,並利用滾輪收集,而得到含有細胞且具有高方向性的纖維薄膜,並利用高配向特性成功引導軸突的生長,證實可運用簡易的電氣紡絲設備,就能夠將組織工程的三大要素:結構、細胞、生物訊號,製造出具多機能性的神經再生導管。

並列摘要


This experiment is based on the technique of bio-electrospinning to develop a combinative structure of electrospinning. According to the best model of nerve regeneration guidance conduits, we can use simple and specific technique of bioelectrospinnig, as meanwhile combining the applications of specific coaxial bi-component spinneret and rotating collector and combine these equipment and technique, the multi-hollow fiber systematic materials can be fabricated. Add nerve growth factor which can improve nerve cell regenerated, and evaluate the functional ability on nerve reparation. The multi-tubes can provide multiple surface area in order to make more cells attached. And the hollow tubes can efficiently induce the axon growing toward the right direction to prove quality and rate of reparation. This study used biodegradable materials including PLA(poly-lactic acid ), PVP(Polyvinyl pyrrolidone), PEG(Polyethylene glycol)、PEO (polyethylene oxide) to be the matrix of nerve guidance conduit., and successfully fabricated the hollow fiber by coaxial head. When the diameter of fiber were under 50 μm and the collective rotating rate was 15.6 m/s, we can get the high oriented fibric membrane. Add PC-12 cells to bio-electrospinning technique, the cells were successfully induced into inner conduit of PLLA by electrospinning. And add NGF into tubes, after observation on fluorescein-transfections PC-12 cells by fluorescent microscope, we can find that cells attach the tube wall, and successfully induced axons growth on the oriented tube wall. According these experiments, we can prove that it is easily to fabricate multi-functional nerve guidance conduits which were made of fibric membrane including PC-12 cells and high oriented arrangement via bio-electrospinning which combined coaxial head and rotating orientated collecting method.

參考文獻


1. Shoichet MS, Schmidt C. Editorial on Neural Tissue Engineering. Biomaterials, 22: 1015. 2001.
2. Nomura H, Tator CH, Shoichet MS. Bioengineered strategies for spinal cord repair. Journal of Neurotrauma 23(3/4). 2006.
3. Bellamkonda RV. Peripheral nerve regeneration: An opinion on channels, scaffolds and anisotropy. Biomaterials, 27: 3515-8. 2006.
4. Lietz M, Dreesmann L, Hoss M, Oberhoffner S, Schlosshauer B. Neuro tissue engineering of glial nerve guides and the impact of different cell types Biomaterials, 27(8): 1425-36. 2006.
5. Bini TB, Gao SJ, Xu XY, Wang S, Ramakrishna S, Leong KW. Peripheral nerve regeneration by microbraided poly(L-lactide-co-glycolide) biodegradable polymer fibers. Journal of Biomedical Materials Research Part A, 68A(2): 286-95. Feb, 2004.

被引用紀錄


盧 毅(2009)。以靜電紡絲製備聚苯噁唑-聚乳酸分子複合材料〔碩士論文,臺北醫學大學〕。華藝線上圖書館。https://www.airitilibrary.com/Article/Detail?DocID=U0007-2408200915535100

延伸閱讀