透過您的圖書館登入
IP:3.144.187.103
  • 學位論文

類澱粉蛋白誘導人類血小板活化與凋亡之分子機轉探討

Molecular mechanisms of amyloid-beta peptide-induced human platelet activation and apoptosis

指導教授 : 許準榕
共同指導教授 : 蕭哲志(George Hsiao)

摘要


類澱粉蛋白(amyloid-beta peptide, Abeta),根據研究指出其為造成神經退化導致阿滋海默症(Alzheimer’s disease)與血管退化引發腦血管病變(cerebral amyloid angiopathy, CAA)的主要物質。在過去的研究發現,血小板活化過程中會釋放出大量的類澱粉蛋白,因此血小板被認為可能是血管中類澱粉蛋白的主要來源。此外研究結果亦指出,存在於血液中的類澱粉蛋白會促使血小板活化。然而,對於類澱粉蛋白是透過何種訊息路徑促使血小板活化,至今並未有進一步之研究。因此,本論文將針對類澱粉蛋白刺激血小板活化可能透過的訊息傳遞路徑,進一步做更深入的研究。在本次的研究中,我們首先利用金粒子去標定血小板中類澱粉蛋白的位置,並且利用穿透式電子顯微鏡(TEM)做進一步的觀察。結果發現,未被刺激活化的血小板中確實含有類澱粉蛋白,而在膠原蛋白(collagen)刺激活化後的血小板,可明顯的發現原本存在於血小板內的類澱粉蛋白藉由open canalicular system (OCS)釋放到細胞外。為了進一步研究類澱粉蛋白活化血小板之機轉,我們利用外加類澱粉蛋白來做研究。實驗結果發現類澱粉蛋白在低濃度下(0.5~2 microM)可加強 collagen 或ADP所誘導之血小板凝集反應。而在高濃度時 (5~10 microM)類澱粉蛋白可透過Phospholipase Cgarma2 (PLCgarmma2) 的磷酸化, phosphoinositide breakdown,細胞內鈣離子的移動,PKC的磷酸化,Akt的磷酸化,和 MAPKs (i.e., JNK1, p38 MAPK, and ERK2) 的磷酸化進而促進 TxA2形成增加。這些訊息路徑的傳遞將直接刺激血小板凝集。再者,我們觀察到使用PKC的抑制劑(Ro318220)可明顯的抑制由類澱粉蛋白所刺激之血小板凝集反應,細胞內鈣離子的移動與PKC的磷酸化。此外,利用 Ras, PAR1, p38 MAPK, PI3-kinase, 和 cPLA2 的抑制劑可觀察到有明顯的抑制由類澱粉蛋白刺激引發血小板中TxA2 生成與血小板凝集反應。在類澱粉蛋白刺激細胞內TxA2 生成的試驗中,利用 ERKs 或 JNKs 的抑制劑發現皆無法有效抑制血小板內 TxA2 的生成,反觀利用p38 MAPK抑制劑可明顯抑制TxA2 的生成,如此可證實類澱粉蛋白刺激血小板活化之MAPK傳遞路徑中,主要是透過p38 MAPK。 藉由這樣的結果我們進一步研究發現,利用PI3-kinase, Akt, Ras和PKC的抑制劑亦可有意義的抑制類澱粉蛋白所引起的p38 MAPK 磷酸化。 再者,亦利用Ras 抑制劑抑制澱粉蛋白所刺激之Akt 磷酸化來證明類澱粉蛋白活化血小板會透過 Ras-Akt 路徑。 此外,在眾多可以活化Ras 路徑的細胞受體中,我們發現SCH79797(PAR1的拮抗劑)可以抑制類澱粉蛋白所刺激之血小板凝集,TxA2 生成, Ras的磷酸化,Akt的磷酸化, 以及 p38 MAPK 的磷酸化。在測量細胞自由基表現的試驗中,我們利用 electron spin resonance (ESR)觀察到類澱粉蛋白(10 microM)在活化血小板的過程中會明顯的促進自由基的生成。此外,在動物實驗中發現 A?? (2 mg/kg) 可加速小鼠腸繫膜血管中血栓的形成。根據以上之結果可發現,類澱粉蛋白是藉由PLCgarmma2-PKC路徑與 PAR1-Ras/Raf-PI3-kinase/Akt-p38 MAPK-cPLA2-TxA2路徑刺激血小板活化並促進血管中血栓的形成。 再者除了以上發現的路徑外,我們亦發現轉錄因子(Nuclear factor kappa B, NF-kappaB)可能涉及類澱粉蛋白所引起之血小板凋亡反應。根據之前的研究指出,轉錄因子(NF-kappaB)可控制有核細胞的生存或死亡,並且與免疫和發炎反應有關,然而對於其在無核細胞中所扮演的角色,至今仍不清楚。本實驗將探討在類澱粉蛋白的刺激下轉錄因子(NF-?羠)在無核細胞(血小板)中可能發生的反應。由實驗結果發現在血小板類澱粉蛋白的刺激下,轉錄因子(NF-?羠)會由細胞質轉移至粒線體中,並且會與粒線體DNA上,一段表現NADH dehydrogenase 4 (ND4)蛋白的基因結合,這樣的結合將造成ND4蛋白的表現受到限制(ND4是粒線體呼吸傳遞鏈中complex 1的重要組成蛋白)。如此一來將促使粒線體的膜電位下降(失衡),cytochrome c由粒線體中被釋放出來,導致粒線體尚失功能。同時,由實驗結果亦發現類澱粉蛋白會促使血小板內caspase-9 與 caspase-3 活化並且產生PS exprose的現象,導致血小板走向凋亡(apoptosis)。此外我們利用SCH79797(PAR1抑制劑),LY294002(PI3-Kinase抑制劑),Ro318220(PKC抑制劑),Akt-I(Akt抑制劑),SB203580(p38MAPK抑制劑)等抑制劑可明顯抑制類澱粉蛋白在血小板中所引起的PKC,Akt,p38 MAPK和IKKbeta的磷酸化反應,再者亦觀察到利用NF-kappaB decoy 、IKKbeta 抑制劑 和 proteasome抑制劑,可以顯著抑制類澱粉蛋白在血小板中引起的凋亡現象。 由本研究結果發現,一直以來被認為作用於有核細胞細胞核的轉錄因子NF- kappaB, 如今在無核細胞血小板中發現了新功能。而我們對於NF-kappaB訊號傳遞的新發現是: 無核細胞血小板中的NF-kappaB在受到類澱粉蛋白刺激下,會由血小板細胞質進入至粒線體中,並與粒線體DNA結合而影響整個細胞,導致無核細胞血小板走向凋亡,這是之前未曾被探討或報導的。 綜合以上的研究結果我們下了以下數點結論。(1) 首先,我們證實類澱粉蛋白存在於血小板中,並在血小板活化時會被釋放至血液中。(2) 再者,我們發現類澱粉蛋白在低濃度下(0.5~2 microM)會加強血小板刺激劑(collagen)對血小板造成的活化反應,高濃度的類澱粉蛋白(5~10 microM)可直接造成明顯的血小板凝集。而促使這些反應發生所可能透過之分子機轉包括PLCgarmma2-PKC pathway與 PAR1-Ras/Raf-PI3- kinase/Akt-p38 MAPK-cPLA2-TxA2 cascades 兩條路徑。 (3) 在動物實驗中我們更發現類澱粉蛋白會促使血栓形成,如此將可能有造成中風的危機。 (4) 此外,研究結果亦發現類澱粉蛋白會造成血小板的凋亡,這是過去未曾被報導的。甚至我們有更驚人的發現,那就是一直被認為只有在有核細胞中扮演讓細胞存活功能的NF-kappaB,居然在血小板中扮演著死神的角色。類澱粉蛋白造成血小板凋亡所透過的路徑 如下:類澱粉蛋白透過活化PI-3 Kinase-PKC-Akt-p38 MAPK- IKK-I kappaBalpha 路徑進而活化 NF-kappaB, 被活化的NF-kappaB 將由細胞質中轉移進入到有雙層膜的粒線體 (mitochondria) 中,並且直接與粒線體DNA上的ND4基因區域結合,如此的結合將導致 ND4基因表現下降,促使粒線體膜電位改變、cytochrome c 釋放,造成粒線體尚失功能。 被釋放的cytochrome c 與caspases-9結合進一步活化caspases-3 ,此外亦發現有PS exposure的現象,如此已可證實細胞走向凋亡。 未來的研究我們將更進一步去探討,類澱粉蛋白對血小板所產生的活化甚至凋亡作用,對於造成血管疾病(包括cerebral amyloid angiopathy)可能扮演的重要角色,並尋求解決之道。

關鍵字

類澱粉蛋白 PAR1 p38 MAPK 粒線體DNA NF-kappaB

並列摘要


The amyloid beta peptide (Abeta),a mediator of neuronal and vascular degeneration in the pathogenesis of Alzheimer’s disease and cerebral amyloid angiopathy (CAA), respectively, may have peripheral actions. Platelets are enriched with Abeta and have been shown to enhance platelet actions. However, the detailed signaling pathways through which Abeta activates platelets have not been previously explored. In this study, we examined the intra-platelet Abeta distribution using a gold labeling technique and noted that Abeta was predominantly localized in the cytoplasm of resting platelets. A marked increase in Abeta -gold labeling in an open canalicular system was observed in collagen-activated platelets by TEM. Exogenous Abeta potentiated platelet aggregation by collagen or ADP at lower concentrations (0.5~2 microM). At higher concentrations (5~10 microM), Abeta?n activated platelet aggregation accompanied by phospholipase Cgarmma2 (PLCgarmma2) phosphorylation, phosphoinositide breakdown, [Ca2+]i mobilization, PKC, Akt, and MAPKs (i.e., JNK1, p38 MAPK, and ERK2) phosphorylation as well as TxA2 formation. Ro318220, an inhibitor of PKC, suppressed Aβ-induced platelet aggregation, PKC phosphorylation, and [Ca2+]i mobilization in platelets, suggesting that the PLCgarmma2-PKC pathway is involved in Abeta -induced platelet aggregation. Furthermore, these Abeta actions on platelets were causally related to Abeta activation of p38 mitogen-activated protein kinase (MAPK). Inhibitors of p38 MAPK and its upstream signaling pathways including proteinase-activated receptor 1 (PAR1), Ras, phosphoinositide 3-kinase (PI3-kinase), or Akt, but not extracellular signal-regulated kinase 2 (ERK2)/ c-Jun N-terminal kinase 1 (JNK1), blocked Abeta-induced platelet activation. These findings suggest that the p38 MAPK, but not ERK2 or JNK1 pathway, is specifically activated in Abeta-induced platelet aggregation with the following signaling pathway: PAR1- Ras/Raf-PI3-kinase-Akt-p38 MAPK-cytosolic phospholipase A2 (cPLA2)-TxA2. In the electron spin resonance study, Aβ (2 and 10 microM) markedly triggered hydroxyl radical formation in platelets. In an in vivo study, Abeta (2 mg/kg) significantly shortened the latency in inducing platelet plug formation in the mesenteric venules of mice. Nuclear factor kappa B (NF-kappaB) has emerged as a transcription factor which controls a diverse array of cell functions ranging immune/inflammatory, but its role in anuclear cells is still elusive. Using a signal activating system in anuclear cells entailing Abeta stimulation of platelets, we demonstrated NF-kappaB translocation into mitochondria, binding to a specific mitochondrial DNA (mtDNA) sequence to suppress expression of ND4, a mtDNA encoded gene. Abeta activation of NF-kappaB in platelets was also accompanied by mitochondrial dysfunction characterized by alteration of mitochondrial membrane potential, cytochrome c release, caspase-9 and caspase-3 activation and apoptosis. The contention that these Abeta-activated events are causally related to NF-kappaB translocation into mitochondria to bind mtDNA is supported by the finding that a NF-kappaB decoy, a IKKbeta inhibitor (ML120B) and a proteasome inhibitor were effective in blocking these Abeta?neffects in platelets. Our results suggest that a novel cellular function of NF-kappaB which has been reported to be restricted to regulatory processes involving nuclear events. Full delineation of complex activities of the NF-kappaB signaling system should take into consideration of its regulatory role on mtDNA. In conclusion, We are the first to demonstrate that (1) the distribution of Abeta in human platelets; and that (2) Abeta activation of platelets is mediated, at least partially, by the PLCgarmma2-PKC pathway and PAR1-Ras/Raf-PI3-kinase/Akt-p38 MAPK-cPLA2-TxA2 cascades; and (3) Abeta triggers thrombus formation in vivo; and that (4) Abeta induced platelet apoptotic-like death through the activation of PAR1- PI3-Kinase-PKC-Akt-p38 MAPK- IKK cascade, leading to NF-kappaB translocation from cytosol to mitochondria and subsequent decrease of ND4 levels, mitochondrial dysfunction, caspases activation and PS exposure. Further studies are needed to define the specific role of Abeta activation of platelets in the pathogenesis of vasculopathy including cerebral amyloid angiopathy.

並列關鍵字

amyloid-beta PAR1 p38 MAPK mitochondria DNA NF-kappaB

參考文獻


Ahn, K.S., Sethi, G., Chao, T.H., Neuteboom, S.T., Chaturvedi, M.M., Palladino, M.A., Younes, A. & Aggarwal, B.B. Salinosporamide A (NPI-0052) potentiates apoptosis, suppresses osteoclastogenesis, and inhibits invasion through down-modulation of NF-kappaB-regulated gene products. Blood 110, 2286-2295 (2007).
Ashe, K.H. Mechanisms of memory loss in Abeta and tau mouse models. Biochem. Soc. Trans. 33, 591-594 (2005).
Auphan, N., DiDonato, J.A., Rosette, C., Helmberg, A, & Karin, M. Immunosuppression by glucocorticoids: inhibition of NF-kappa B activity through induction of I kappa B synthesis. Science 270, 286-290 (1995).
Baldwin, A. Series Introduction: The transcription factor NF-?羠 and human disease J. Clin. Invest. 107, 3-6 (2001).
Behl, C., Davis, J.B., Lesley, R. & Schubert, D. Hydrogen peroxide mediates amyloid beta protein toxicity. Cell 77, 817-827 (1994).

延伸閱讀