透過您的圖書館登入
IP:13.58.39.129
  • 學位論文

油酸及亞麻油酸對於streptozotocin刺激之大鼠胰島細胞粒線體生合成的影響及保護作用

Effects of oleic acid and linoleic acid on mitochondrial biogenesis and protection of streptozotocin-treated rat islet cells

指導教授 : 鄭心嫻 謝榮鴻
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


本研究目的是在探討油酸 (18:1) 及亞麻油酸 (18:2) 對於胰臟細胞的保護作用及粒線體基因表現和去偶合蛋白2 (uncoupling protein 2, UCP2) 表現的影響。實驗方法為模仿糖尿病動物模式,以1~8 mM的streptozotocin (STZ) 處理大鼠胰島細胞株 (RIN-m5F),並於處理兩小時後,將STZ從培養液中移除,更換含有0.4或0.8 mM油酸或亞麻油酸的培養液繼續培養24~48小時,再進行細胞存活率、mRNA表現量、蛋白質表現量及胰島素合成量的分析。實驗共分為四組:控制組 (Control)、STZ組 (S)、STZ添加油酸組 (SO) 和STZ添加亞麻油酸組 (SL)。實驗結果顯示,1~8 mM STZ作用1-2小時後,馬上進行細胞存活率的分析,則各組細胞沒有顯著死亡的情形,在STZ處理後,間隔24小時再進行存活率的分析,發現各組細胞均有明顯死亡的現象 (p < 0.05),而4 mM STZ的處理之後,更換含有0.4 mM亞麻油酸的培養液培養24小時,SL組的細胞存活率顯著高於S組 (p < 0.05),若是延長培養時間至48小時,則以0.4和0.8 mM亞麻油酸處理的SL組細胞存活率皆顯著高於S組,SO組與S組則無顯著差異。粒線體基因表現的部分,4 mM STZ刺激2小時,以0.4或0.8 mM亞麻油酸培養24小時 (SL組),會顯著增加NADH dehydrogenase subunit 1 (ND1)、NADH dehydrogenase subunit 6 (ND6)、mitochondrial transcription factor A (mtTFA) 和peroxisome proliferators activated receptor coactivator-1 alpha (PGC-1α) 的表現,但是不會增加uncoupling protein 2 (UCP2) 的mRNA表現。此外,SL組insulin的mRNA表現量也是顯著高於S組,而SO組的基因表現和S組比較沒有顯著差異。胰島素合成量的部分,以0.4 mM STZ處理兩小時會顯著降低細胞中胰島素的合成量,而油酸與亞麻油酸的介入,無法顯著增加胰島素的合成量。 綜合本次實驗結果發現,亞麻油酸可以藉由增加PGC-1α及粒線體基因的表現,進而降低STZ對於胰臟細胞的傷害,此外,兩種脂肪酸的介入均無法回復STZ所導致的胰島素合成降低的現象。 本研究目的是在探討油酸 (18:1) 及亞麻油酸 (18:2) 對於胰臟細胞的保護作用及粒線體基因表現和去偶合蛋白2 (uncoupling protein 2, UCP2) 表現的影響。實驗方法為模仿糖尿病動物模式,以1~8 mM的streptozotocin (STZ) 處理大鼠胰島細胞株 (RIN-m5F),並於處理兩小時後,將STZ從培養液中移除,更換含有0.4或0.8 mM油酸或亞麻油酸的培養液繼續培養24~48小時,再進行細胞存活率、mRNA表現量、蛋白質表現量及胰島素合成量的分析。實驗共分為四組:控制組 (Control)、STZ組 (S)、STZ添加油酸組 (SO) 和STZ添加亞麻油酸組 (SL)。實驗結果顯示,1~8 mM STZ作用1-2小時後,馬上進行細胞存活率的分析,則各組細胞沒有顯著死亡的情形,在STZ處理後,間隔24小時再進行存活率的分析,發現各組細胞均有明顯死亡的現象 (p < 0.05),而4 mM STZ的處理之後,更換含有0.4 mM亞麻油酸的培養液培養24小時,SL組的細胞存活率顯著高於S組 (p < 0.05),若是延長培養時間至48小時,則以0.4和0.8 mM亞麻油酸處理的SL組細胞存活率皆顯著高於S組,SO組與S組則無顯著差異。粒線體基因表現的部分,4 mM STZ刺激2小時,以0.4或0.8 mM亞麻油酸培養24小時 (SL組),會顯著增加NADH dehydrogenase subunit 1 (ND1)、NADH dehydrogenase subunit 6 (ND6)、mitochondrial transcription factor A (mtTFA) 和peroxisome proliferators activated receptor coactivator-1 alpha (PGC-1α) 的表現,但是不會增加uncoupling protein 2 (UCP2) 的mRNA表現。此外,SL組insulin的mRNA表現量也是顯著高於S組,而SO組的基因表現和S組比較沒有顯著差異。胰島素合成量的部分,以0.4 mM STZ處理兩小時會顯著降低細胞中胰島素的合成量,而油酸與亞麻油酸的介入,無法顯著增加胰島素的合成量。 綜合本次實驗結果發現,亞麻油酸可以藉由增加PGC-1α及粒線體基因的表現,進而降低STZ對於胰臟細胞的傷害,此外,兩種脂肪酸的介入均無法回復STZ所導致的胰島素合成降低的現象。

並列摘要


In this study, we investigated whether oleic acid (18:1) and linoleic acid (18:2) could protect the injury of β cells from streptozotocin (STZ) treatment by inducing uncoupling protein 2 (UCP2) expression and mitochondrial biogenesis. Furthermore, we studied that oleic acid and linoleic acid may play different roles in biogenesis of mitochondria. There are four groups in this study: control, S (cells were treated with STZ only), SO and SL (cells were treated with oleic acid or linoleic acid after treatment with STZ). The results of cell viability study showed that STZ decreased cell proliferation after 24-hour treatment and 0.4 mM or 0.8 mM linoleic acid could maintain cell proliferation after 48-hour treatment and protect cells from STZ damage. The levels of mRNA expression of NADH dehydrogenase subunit 1 (ND1), NADH dehydrogenase subunit 6 (ND6), mitochondrial transcription factor A (mtTFA), peroxisome proliferators-activated receptor coactivator-1 alpha (PGC-1α) and insulin, protein expression of COX-VIc and PGC-1α are increased in cells treated with 4 mM STZ for 2 hours and 0.4 mM linoleic acid for 24 hours (group SL). However, The expressions of these genes were not induced by oleic acid and UCP2 mRNA was not increased by both oleic acid and linoleic acid treatment. Furthermore, the insulin production in β cells was reduced by STZ and both oleic acid and linoleic acid could not rescue insulin production in β cells. In conclusion, the results from this research suggest that only linoleic acid can protect β cells from STZ injury through increasing PGC-1α expression and mitochondrial biogenesis. Both oleic acid and linoleic acid could not recover the decrease of insulin production caused by STZ.

並列關鍵字

streptozotocin β cell oleic acid linoleic acid mitochondria

參考文獻


Ballinger, S. W., Patterson, C., Yan, C. N., Doan, R., Burow, D. L., Young, C. G., Yakes, F. M., Van Houten, B., Ballinger, C. A., Freeman, B. A., and Runge, M. S. (2000). Hydrogen peroxide- and peroxynitrite-induced mitochondrial DNA damage and dysfunction in vascular endothelial and smooth muscle cells. Circ Res 86, 960-966.
Belfort, R., Mandarino, L., Kashyap, S., Wirfel, K., Pratipanawatr, T., Berria, R., Defronzo, R. A., and Cusi, K. (2005). Dose-response effect of elevated plasma free fatty acid on insulin signaling. Diabetes 54, 1640-1648.
Chabi, B., Adhihetty, P. J., Ljubicic, V., and Hood, D. A. (2005). How is mitochondrial biogenesis affected in mitochondrial disease? Med Sci Sports Exerc 37, 2102-2110.
Dobbins, R. L., Chester, M. W., Stevenson, B. E., Daniels, M. B., Stein, D. T., and McGarry, J. D. (1998). A fatty acid- dependent step is critically important for both glucose- and non-glucose-stimulated insulin secretion. J Clin Invest 101, 2370-2376.
Flachs, P., Horakova, O., Brauner, P., Rossmeisl, M., Pecina, P., Franssen-van Hal, N., Ruzickova, J., Sponarova, J., Drahota, Z., Vlcek, C., et al. (2005). Polyunsaturated fatty acids of marine origin upregulate mitochondrial biogenesis and induce beta-oxidation in white fat. Diabetologia 48, 2365-2375.

延伸閱讀