透過您的圖書館登入
IP:18.220.147.154
  • 學位論文

以資料探勘技術為基建構PCB客訴問題處理模式

The Development of Customer Complaint Handling Mode for Printed Circuit Board Industries Using Data Mining Techniques

指導教授 : 鄭春生 博士
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


由於企業競爭環境追求快速服務機制,面對顧客問題之處理,企業需要在短時間內快速找到問題的來源,並提出診斷改善措施。在印刷電路板業中,常藉由改正行動處理單,記錄顧客產品瑕疵特徵,通常品保人員在接獲顧客所提出之產品瑕疵特徵後,詢問製程現場與相關之工程師,以瞭解造成該項瑕疵之原因,繼而快速回應顧客並提出因應對策。 本研究主要在提出適用於印刷電路板之客訴問題處理模式。本研究之模式主要是以資料探勘技術為基礎,診斷出各式各樣來自於顧客所提出之產品缺陷原因,並找出解決對策。以外部改正行動處理單來說,記錄著對於所有產品缺陷的描述及改正措施,本研究運用自組織映射網路,針對外部客訴問題進行相似工作站之聚類;在主因分析方面,藉由決策樹分析之運用,找出造成產品異常之主因,最後對於所找出之異常主因,建構其對應之因應手法,以達到快速診斷與回應外部顧客、減少重複學習及分析的時間,並可提供給內部製程人員作為改善或教育訓練之依據。本研究實際以一PCB製造商為研究對象,來驗證本研究所提出之架構為一有效之工具。

並列摘要


In today’s competitive manufacturing, a quick response to corrective action request (CAR) from customers is a very important issue. In the printed circuit board (PCB) industries, the defective issue from customers is recorded in CAR by the quality engineers and then the countermeasures are proposed for this issue immediately. The focus of this research is on the development of a handling model of the customer complaint for the PCB industries. The handling model of the customer complaint based on data mining technology will be developed to address various types of defects described by customers. External CARs that record the descriptions of defects and correction procedures will be collected and clustered by workstations using SOM neural networks. A decision tree will be applied to build a diagnosis knowledge base to address the root causes of defective products. Data from a local PCB manufacturer demonstrate that the proposed approach is a useful tool in preparing a CAR report.

參考文獻


11. 劉中光,「以資料挖掘為基建構製程品質問題診斷系統─以印刷電路板業為例」,元智大學工業工程與工程管理研究所碩士論文,2001。
19. Clyde F., J. Coombs, Printed Circuits Handbook, 4th edition. McGraw-Hill, New York, (1995).
20. Evans, S., S. Lemon, C. Deters, R. Fusaro and H. Lynch, “Automated detection of hereditary syndromes using Data Mining,” Computer and Biomedical Research, 30, 337-348 (1997).
21. Fayyad, U. G., G. P. Shapiro and P. Smyth, “The KDD process for extracting useful knowledge from volumes of data,” Cummunication of the ACM, 39(11), 27-34 (1996).
22. Frawley, W. J., G. P. Shapiro and C. J. Matheus, “Knowledge discovery in databases: an overview,” Knowledge Discovery in Database, AAAI Press/The MIT Press, Menlo Park, CA, (1991).

被引用紀錄


周雅君(2007)。以資料探勘為基建構偏光板品質異常診斷系統〔碩士論文,元智大學〕。華藝線上圖書館。https://doi.org/10.6838/YZU.2007.00195
曾韋霖(2004)。印刷電路板工作站內製程品質資料挖掘及建構異常診斷系統〔碩士論文,元智大學〕。華藝線上圖書館。https://www.airitilibrary.com/Article/Detail?DocID=U0009-0112200611324558
鍾秋英(2004)。資料挖掘應用於產品失效模式與效應分析---以印刷電路板業為例〔碩士論文,元智大學〕。華藝線上圖書館。https://www.airitilibrary.com/Article/Detail?DocID=U0009-0112200611311777
莊國宏(2006)。紡織業技術服務活動對客戶之重要性研究〔碩士論文,元智大學〕。華藝線上圖書館。https://www.airitilibrary.com/Article/Detail?DocID=U0009-2107200621492900
官大州(2006)。應用資料探勘於遲緩兒照護者壓力之研究〔碩士論文,國立虎尾科技大學〕。華藝線上圖書館。https://www.airitilibrary.com/Article/Detail?DocID=U0028-1501201314421000

延伸閱讀