透過您的圖書館登入
IP:3.144.113.197
  • 學位論文

非線性控制之線型感應馬達驅動系統

Nonlinear Control for Linear Induction Motor Drive System

指導教授 : 魏榮宗
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


中文摘要 本論文之目的在於發展滑動模式線性化迴授控制系統以及適應性最佳化控制系統,並應用於線型感應馬達精密定位控制上。首先發展驅動電路並利用非線性解耦技術以處理線型感應馬達推力與磁通大小的耦合關係,且設計滑動模式線性化迴授控制系統,以增加線型感應馬達驅動控制系統之強健性。為了解決滑動模式線性化控制系統解耦時需要二次側磁通之問題,本論文提出適應性磁通估測器以估測二次側磁通,且利用里亞普諾穩定理論加以驗證即使線型感應馬達具有系統不確定量時,滑動模式線性化迴授控制系統依然具有漸進穩定特性。更進一步提升系統最佳化控制性能,本論文亦設計適應性最佳化控制系統,此控制系統提出適應性不確定量估測器估側不確定量之邊界值以克服傳統最佳化控制系統之缺失,且其控制法則皆由里亞普諾穩定分析的推導過程中獲得,因此可以保證系統漸進穩定之特性。最後本論文以數值模擬與實作結果來驗證所設計控制系統之有效性。

並列摘要


Abstract The purpose of this thesis is to develop a sliding-mode feedback linearization control (SMFLC) system and an adaptive optimal control(AOC) system for the high-precision position control of a linear induction motor (LIM). First, the driving cricuit of the LIM is developed and the nonlinear decoupled control technique is adopted to decouple the thrust force and the flux amplitude of the LIM. Then, a SMFLC system, which is comprised of a sliding-mode flux and a sliding-mode position controllers, is designed in order to increase the robustness of LIM drive system. Moreover, to relax the requirement of the secondary flux in the SMFLC system, an adaptive flux observer is proposed to estimate the secondary flux. The control laws of the SMFLC system are derived in the sense of Lyapunov stability theorem such that the asymptotically stability of the control system can be guaranteed even under the possible occurrence of uncertainties. In addition, an AOC system is designed to increase the system control performance. In the AOC system, an adaptive uncertainty observer is used to estimate the bound of uncertainties for confronting the shortcoming in the traditional optimal control system. The control laws of the AOC system also are derived in the sense of Lyapunov stability theorem, so that system-tracking stability can be guaranteed. Finally, the effectiveness of the proposed control schemes is verified by both numerical simulation and experimental results.

參考文獻


[1] I. Takahashi, and Y. Ide, “Decoupling control of thrust and attractive force of a LIM using a space vector control inverter,” IEEE Transactions on Industrial Applications, vol. 29, no. 1, pp. 161-167, 1993.
[2] I. Boldea, and S. A. Nasar, Linear Electric Actuators and Generators. New York: Cambridge, 1997.
[3] D. Roy, D. Saruhashi, S. Yamada, and M. Iwahara, “Fabrication and development of a novel flux-concentration type linear induction motor,” IEEE Transactions on Magnetics, vol. 36, no. 5, pp. 3555-3557, 2000.
[4] I. E. Davidson, and J. F. Gieras, “Performance analysis of a shaded-pole linear induction motor using symmetrical components, field analysis, and finite element method,” IEEE Transaction on Energy Conversion, vol. 15, no. 1, pp. 24-29, 2000.
[6] P. L. Jansen, L. J. Li, and R. D. Lorenz, “Analysis of competing topologies on linear induction machines for high-speed material transport systems,” IEEE Transactions on Industrial Applications, vol. 31, no. 4, pp. 925-932, 1995.

延伸閱讀