透過您的圖書館登入
IP:18.118.193.108
  • 學位論文

功率因數矯正器之特性研究

Characteristics Analysis of Power Factor Corrector

指導教授 : 楊大中
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


功率因數矯正器(Power Factor Corrector, 以下簡稱P.F.C.),主要由鐵芯及線圈所構成,主要功能為調整相角、減少虛功、提升功率,達到功率因數趨於1,並且可減少諧波干擾,改善供電品質。 本文研究分析之P.F.C.為裝置於電源供應器(Power Supply)中,有鑑於近年來針對噪音管制及電力品質的重視,國際上紛紛研擬各項規範限制,作為降低電器用品產生噪音污染及電力耗損的標準。而P.F.C.在上述問題中,扮演著重要的角色,原因是P.F.C.在電源供應器中即屬於振動噪音源。因此,倘若能降低P.F.C.振動噪音問題,提升功率與減少磁漏,就可符合未來噪音和電力規範的趨勢。 為探討P.F.C.振動噪音、效率及磁漏問題,本研究先以魚骨圖方式收集各種可能原因,進而擬定三大執行策略,作為解決問題方向:第一、振動分析。了解系統本身自然頻率與交流電頻率(60Hz)是否有共振關係。使用Ansys有限元素分析軟體,以模態分析功能(Modal Analysis),分析P.F.C.系統之振動特性,包括不同模態下的頻率及振形。除了上述運用外,並使用磁路模擬軟體─Magnet,與Ansys做相互驗證比對。 第二、實驗量測分析。包含振動實驗與電感量測實驗。振動實驗方面,使用頻譜分析儀(Dynamic signal analyzer)、加速度規(Accelerometer)、負載水泥電阻及電源供應器等設備,測量懸吊狀態下P.F.C.各點位置的振動情況。電感量測實驗方面,利用直流偏壓電流源(DC Bias Current Source)、精密LCR錶(Precision LCR Meter)配合電感重疊電流分析軟體(LI Chroma),來測量P.F.C.在不同負載電流下之電感。 第三、Magnet磁路分析,使用Magnet軟體,以3D Static與3D Harmonic功能,模擬P.F.C.實際通電後磁場情形。藉由分析得知其電感、平均磁能、Power loss及磁漏等結果。本研究並以不同材質、不同外形、不同開孔等,不同假設來模擬分析。 本研究最終目標,將綜合上述分析結果作探討,建立出有系統P.F.C.之設計,製作出實際P.F.C.,應用在電源供應器中。並透過實驗設備的測量,來達到降低振動噪音、減少磁漏及提升效率之目的。

並列摘要


Power Factor Corrector (PFC) is composed of core, coil, bobbin, and frame. Its main functions are to adjust the phase angle between the AC voltage and current, reduce the virtual work of power supply, raise power efficiency, and reduce interference of harmonic waves. Due to the demanding on the noise control and electrical quality, many regulations and standards are established by nations to reduce the noise levels and electricity consumption of appliance and electronic equipment. The power factor corrector plays an important role on these issues because PFC under this study is used in the power supply of electronic equipment and is one of the vibration and noise sources identified. The increasingly stringent requirements on the design of PFC will be met if the vibration and noise of PFC can be controlled, its efficiency and magnetic flux leakage can be further improved. A cause-effect analysis is conducted first to analyze possible causes of the noise, vibration, efficiency, and flux leakage problems of PFC. Then, the study consists of three parts: (1) Vibration analysis: To understand the resonant relations between the natural frequencies and the driving frequency of AC power (i.e., 60Hz), an FEM software, ANSYS, was used to perform the modal analysis of PFC, including natural frequency and mode shape. (2) Experimental measurements: vibration and inductance measurements were made. Dynamic signal analyzer, accelerometer, cement load resistors, power supply, etc., were used in the vibration testing of PFC under suspended conditions. DC bias current source, precision LCR meter, and inductance analysis program, LI Chroma, were used in the inductance measurement for different operating current conditions. (3) Magnetic circuit analysis: simulations by using the magnetic analysis programs, Magnet and Ansys, were conducted for comparison and verification. The 3D Static and 3D Harmonic modules of Magnet were used to calculate the inductance, averaged magnetic energy, power loss, and flux leakage. The effects of different materials, core shapes, and openings were analyzed. The objective of this investigation is to establish design guidelines for PFC through systematic analyses and experiments, not only to decrease vibration, noise, flux leakage, and power loss, but also to increase inductance and magnetic energy, produced by the power factor corrector in the power supply system.

參考文獻


Infolytical Corporation, 2001, “Magnet Getting Started Guide,” pp. 79-94.
Bahiana, M., Belita, K., Queiroz, S. L. A., Denardin, J. C., and Sommer, R. L., 1999, “Domain size effects in Barkhausen noise,” Phys. Rev. E 59, pp. 3884-3887.
Moaveni, S., 1999, “Finite Element Analysis,” Prentic-Hall, Inc, pp. 256-261.
Nippon Steel Corporation, 1998, “Electrical Steel Sheets,” pp. 9-23.
Nippon Steel Corporation, 1998, “Non-Oriented Electrical Steel Sheets,” pp. 60-67.

延伸閱讀