麻醉,是在外科手術中不可或缺的一環。但是由於麻醉還不夠科學化,完全靠經驗,而造成過淺或過深的藥量會對病人有不良的影響。因此近幾年才定義麻醉深度來討論病患在麻醉過程中的清醒程度,但是麻醉深度的判定,卻一是個未被十分了解的主題,所以近來才有許多醫療輔助儀器來判斷病人的麻醉深度,但是相關的研究理論還未完全公開,導致麻醉浨度需依賴儀器才可以得知。 本論文便是根據現有的環境和設備,透過Bispectrum Index(BIS)腦波儀來收集Spectral Edge Frequency 95(SEF95)、Median Edge Frequency(MEF)、BIS與Electroencephalogram (EEG)的訊號,並且利用數位濾波的方式將腦波中的雜訊過濾掉後,以近似熵與複雜度兩種非線性的方法來分析腦波訊號,最後配合SEF95、MEF與BIS指數與本研究做比較。 本論文的資料收集主要是以鼻竇炎的病患為主。最後經由統計分析25名病患的BIS、SEF95、MEF、近似熵與複雜度後得知,BIS、近似熵與複雜度能夠有效的區別病患於麻醉誘導期、恢復期與維持期(P<0.05)。此外,我們更利用斜率的方式來討論彼此之間對藥物代謝之敏感度的比較,其中近似熵於誘導期的斜率值為-23.4±15.1是五種分析中最大,且與BIS的斜率值有明顯的差異性(P<0.05),因此近似熵是本論文所有方法中對於麻醉深度之預測上具有不錯的表現。
Because of appropriate anesthesia depth (DOA) can avoid squander of anaesthetic and patient can restore faster, in surgical operation, how to make maintain of anesthesia depth is very important for anesthetist and surgical doctors. In recent years many scholars define the DOA to discuss sickness in the anaesthesia process sober degree. The determination of DOA is not extremely understood subject and correlation research theory is not still be opened, so many anesthetists know the patient’s DOA only by depending on medical instrument. This study penetrates the BIS brain wave monitor to collect SEF95, MEF, BIS and the EEG signal, and uses digital signal processing (DSP) to filter the noise of brain wave. We use the approximate entropy and complexity nonlinear method to predict the DOA , and use this results to compare with SEF95, MEF, and the BIS index. This study collect sickness object by Nasosinusitis sickness primarily. Finally after statistical analysis 25 patient's BIS, SEF95, MEF, the approximate entropy and complexity , we knew BIS, the approximate entropy and complexity can effective difference patient during the state of induction, maintence and recovery.(P<0.05). In addition, we discuss using the slope way compare between each other to the brain wave change sensitivity, and we find the approximate entropy and complexity have a good performance.