由於3C產品均朝可攜帶化方向發展,因此體積小的鋰離子電池成為非常熱門的產品。鋰離子電池的正極材料,以往是用鋰鈷氧化合物,但鋰鈷氧化合物材料太貴,電池成本太高,因此可替代之產品是以成本較低的鋰錳氧化合物作為新的鋰離子電池正極材料。本研究之目的,是在利用模擬之方法,來平衡正極材料生產線中各製程站的運作率,以及求得最高產能的生產線。模擬分析出的成果不但可以作為建立新的鋰電池正極材料生產線的方針,而模擬分析的輸出數據,也可成為廠房設施規劃模式所需輸入的數據。本研究之方法是利用舊產品的生產線模型,作為模擬分析的生產線模式原型。然後用來模擬分析新產品生產線各製程站的運作率,找出延遲的製程站,並且增加延遲站內的機器數量,以求得各站運作率的平衡,以及最大產能的新產品生產線。然後再以模擬分析輸出的數據,作為廠房設施規劃模式所需之輸入數據,以期利用設施規劃模式,找出最短運送距離之部門排列方式的新產品廠房設施規劃。本研究利用模擬分析法,建立了最大產能的生產線。並利用施規劃模式,找出最短運送距離的新廠房之設施規劃。本研究之結果,可作為未來建立新鋰錳氧化合物生產線的設計參考。
Small size, light weight, and easy to carry has become major trend of new 3C product development. Lithium rechargeable battery is the key driver to help smaller and lighter design of 3C products. Currently, the cathode material of most of Lithium rechargeable batteries is Lithium Cobalt Oxide (LiCoO2). Due to high cost of Lithium Cobalt Oxide, the battery firms are trying to design lower cost material Lithium Manganese Oxide (LiMn2O4) as their new generation of Lithium batteries. The purpose of this research was to balance the cycle time of each station, and to maximize production output by simulation. The results not only provided a guideline for investment of building a new production line for Cathode Materials for Lithium Ion Batteries but also offered the input data for the planning procedure of facility layout. The method of this research was to compile and analyze the data from existing production line as the base model of simulation, then applied the findings into the new product line. Giving the cycle time of each work station, we increased the machine numbers by postponing the lag time of each station to balance the cycle time of each station and maximized production output. The analysis from the simulation was to maximize production line output. This facility layout planning procedures will help to design the shortest material handling distance within plant facility. The result of this research can be used for next new product line for producing Lithium Manganese Oxide.