透過您的圖書館登入
IP:3.139.89.220
  • 學位論文

應用影像技術於姐妹染色體型態辨識之研究

A Study on Morphological Recognition of Sister Chromatid Exchanges Using Image Processing Technique

指導教授 : 郭文嘉

摘要


姊妹染色體交換(Sister Chromatid Exchange SCE)主要用於辨識細胞分裂中期之染色體變異情形。姊妹染色體是一條染色體的兩條單體在同一位置上,發生的同源片段的交換情況,利用普通染色方法無法顯示,需要用特殊方法檢測。SCE與DNA的損傷和修復過程有關,它能夠體現染色體被外界元素損傷的程度,以及機體自我修復DNA的能力。在染色體型態辨識中,染色體外觀特徵主要是由p、q兩臂所組成,著絲點處較其他地方為窄,而邊緣偵測扮演重要的角色,將會決定分割的效果以及影響後續的處理動作。其次,由於染色體的非剛性,故測量染色體長度並非直覺方法可以完成,必須參考染色體各部分的變化程度來計算染色體長度。因此本論文主要以等高集合法以及正則性與特異性分析,提供SCE影像的前置分割處理,進而完成型態辨識及變異分析等應用。

並列摘要


Sister chromatid exchanges (SCE) involve breakage of both DNA strands, followed by an exchange of whole DNA duplexes. The formation of SCE correlates closely with recombinational repair and the induction of point mutations, gene amplification and cytotoxicity. Cytogenetic analyses are almost always based on examination of chromosomes fixed during mitotic metaphase. A common task in Cytogenetic tests is the classification of human chromosomes by specific features. There are two arms in a chromosome. The shorter one is named P arm and the longer one is named Q arm. Sister chromatids are attached at an area called the centromere. Level Set method is a numerical technique that can follow the evolution of contours and interfaces. Analyzing regularities and singularities of shapes is an indirect skeletonization method that can reduce unwanted skeletonization artifacts. In this paper we use these two methods to extract of boundaries and skeletons of SCE images that can be further used for classification and analyses of human chromosomes.

參考文獻


[9] S. M. Kwok, R. Chandrasekhar, and Y. Attikiouzel, and M. T. Rickard, “Automatic Pectoral Muscle Segmentaion on Mediolateral Oblique View Mammograms,” IEEE Trans. on Med. Imag., vol. 23, no. 9, pp. 1129-1140, Sept. 2004.
[10] S. Osher and J. A. Sethian, “Fronts Propagating with Curvature Dependent Speed: Algorithms Based on Hamilton-Jacobi Formulation,” J. Comp. Physi., vol. 79, pp. 12-49, 1988.
[11] J. A. SETHIAN, Fast Marching Methods and Level Set Methods, http://math.berkeley.edu/~sethian.
[13] J. J. Zou and H. Yan, “Skeletonization of Ribbon-Like Shapes Based on Regularity and Singularity Analyses,” IEEE Trans. Syst., Man, Cybern. Part B, vol. 31, no. 3, pp. 401-407, June 2001.
[16] T. Y. Zhang and C. Y. Suen, “A fast parallel algorithm for thinning digital patterns,” Commun. ACM, vol. 27, pp. 236–239, 1984.

延伸閱讀