透過您的圖書館登入
IP:13.59.205.74
  • 學位論文

微小型燃料重組器與高溫質子交換膜燃料電池整合研究

Integration study of Micro reformer and High temperature PEM Fuel cell

指導教授 : 蘇艾

摘要


本研究乃結合甲醇燃料燃燒器及甲醇重組器的產氫實驗,並連結高溫質子交換膜燃料電池發電。燃燒器及重組器分別地使用商購的白金氧化觸媒及銅鋅觸媒,首先確認燃燒器的熱能足以提供甲醇蒸汽重組反應,改變重組器的實驗參數:操作溫度、甲醇水溶液進料流率及水碳比等,進行重組器效能實驗。產物使用即時氣體分析儀進行分析,計算出產物中有74%~74.9%的氫氣, 23.5%~25.7%的二氧化碳,一氧化碳小於2%。 使用低一氧化碳濃度及最高甲醇轉換率的實驗參數,接著進行重組器與燃料電池的整合實驗;重組氣體可以使發電效率最高6W的高溫質子交換膜燃料電池提供3~4W的電力;然而氣體因為未加壓造成進氣流量及電池電流不穩定。 本研究建立了一個甲醇重組器及高溫質子交換膜的整合平台,提供未來重組器與燃料電池整合研究的基本架構。

並列摘要


This study is a combination of methanol fuel combustor and methanol reformer hydrogen production experiment. And links to high-temperature proton exchange membrane fuel cell to generate electricity. Reformer and combustor use the commercial platinum-oxide catalyst and the copper-zinc catalyst, respectively. First of all, to confirm the combustor provide heat sufficient to the reorganization of methanol steam reaction. Change the experimental parameters of reactor: operating temperature, methanol-water solution flow rate of feed and steam to carbon ratio, to carry out the performance experiment of reformer. The production use Real-Time Gas Analyzer for analysis The product of 74% ~ 74.9% hydrogen, 23.5% ~ 25.7% of carbon dioxide; not more than 2% of carbon monoxide by calculation. To use the experimental parameters that low carbon monoxide concentration and the highest methanol conversion rate, then the reformer and fuel cell integration experiment is performed. Reformer gas can provide high-temperature proton exchange membrane fuel cell 3 ~ 4W of electricity ,which the maximum efficiency is 6W. However, because the gas which is not pressurized caused the inlet flow rate and battery current are instability. In this study, a methanol reformer and high-temperature proton exchange membrane fuel cell integrated platform was set up. The result provide the basic structure of integration study of micro reformer and high- temperature proton exchange membrane fuel cell in the future.

參考文獻


28. 朱訓志,”甲醇燃料氧化燃燒實驗分析,”碩士論文,元智大學機械工程研究所,民國97年。
1. Han J., Kim I. S., Choi K. S., 2000, ” Purifier-integrated methanol reformer for fuel cell vehicles,” Journal of Power Sources Vol. 86 pp.223–227
2. Zanfir M., Gavriilidis A., 2003, “Catalytic combustion assisted methane steam reforming in a catalytic plate reactor,” Chem. Eng. Sci., Vol. 58, pp.3947–3960.
3. Ashok S. P., Terry G. D., Nicholas S., Elizabeth B., Kristopher G., Michael Q., Christopher B.,2004,“ Portable fuel cell systems for America’s army: technology transition to the field, “Journal of Power Sources Vol. 134 pp.220-225
4. Holladay J. D., Jones, E. O., Dagle, R. A., Xia G. G., Cao C., Wang Y., 2004, “High efficiency and low carbon monoxide micro-scale methanol processors,” J. Power Sources Vol.131 pp.69-72.

被引用紀錄


蘇厚華(2010)。某微型甲醇重組器設計與性能分析〔碩士論文,國立臺灣大學〕。華藝線上圖書館。https://doi.org/10.6342/NTU.2010.02879
陳冠嘉(2011)。高溫型質子交換膜燃料電池與內部甲醇重組器整合系統之研究〔碩士論文,元智大學〕。華藝線上圖書館。https://www.airitilibrary.com/Article/Detail?DocID=U0009-2801201414593273

延伸閱讀