透過您的圖書館登入
IP:18.217.230.80
  • 學位論文

微波輔助合成氧化釕/石墨烯奈米複合材料及其電容效能研究

Microwave-assisted synthesis and capacitive performance of RuO2/graphene nanocomposites

指導教授 : 廖建勛
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


本研究使用Hummer方法製備氧化石墨烯(GO),使用微波輔助方法合成二氧化釕(RuO2)奈米微粒於氧化石墨烯的表面,再以鍛燒處理得到不含水結晶態與含水非結晶態之GO/RuO2複合材料。另外以4– aminoazobenzene-4’-sulfonic acid 改質 GO 得到f-GO/RuO2,於GO基面或邊緣導入偶氮苯磺酸基團和磺酸根,以增加氧化石墨烯的層間距離及水溶液分散性。使用XRD 、SEM 、TEM 、Raman、FTIR等儀器分析這些複合材料的型態結構特性,再將所製備材料組裝成半電極,並分析其電化學之性質。在電化學分析中,非含水結晶之GO/RuO2在電流密度0.1A/g下,以300℃鍛燒者其比電容可達 461 F/g,含水非結晶之GO/RuO2,以150℃鍛燒者其比電容可達1244 F/g,f-GO/RuO2之最高比電容可達1456 F/g,所以GO/RuO2為製備超級電容器的良好材料。

並列摘要


In this study, we modify the Hummer method to prepare graphene oxide (GO). Using microwave-assisted synthesis to deposit RuO2 nanoparticles directly on the surface of GO. In order to enlarge the interlayer distance and enhance the aqueous dispersion of GO, p-phenyl-SO3H or sulfonic groups (–SO3-) are introduced into the basal and/or edge planes of GO using 4– aminoazobenzene-4’-sulfonic acid to obtain f-GO/RuO2. The features of texture, morphology, and structure properties of prepared GO/RuO2 are analyzed by XRD, SEM, TEM, FTIR and Raman and other instrumental analysis. The GO/RuO2 composites are assembled as the electrode for electrochemical measurements by cyclic voltammetry and galvanostatic charging–discharging under current density of 0.1 A/g. The highest specific capacitance of 461 F/g for anhydrous crystalline GO/RuO2, 1244 F/g for hydrous amorphous GO/RuO2, and 1456 F/g for f-GO/RuO2 are obtained. Therefore, GO/RuO2 nanocomposites have a positive synergistic effect and potential for the applications of supercapacitors.

參考文獻


[1] W. C. Fang, Carbon Nanotube Based Nanocomposites for Miniaturized Supercapacitor Applications. Hsinchu city : National Tsing Hua University, 2006.
[3] A. Burke. Journal of Power Sources. 2000, Vol. 91, p. 37.
[7] K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. Khotkevich. Proceedings of the National Academy of Sciences of the United States of America. 2005, Vol. 102, p. 10451.
[14] G. Chen, C. Wu, W. Wang,D. Wu, W. Yan. Polymer. 2003, Vol. 44, p. 1781.
[15] S. Z. Wu, D. W., Wang, W. Ren, J. Zhao,G. Zhou, F. Li, H. M. Cheng. Advanced Functional Materials. 2010, Vol. 20, p. 3595.

延伸閱讀