透過您的圖書館登入
IP:3.12.162.179
  • 學位論文

催化劑催化硼氫化鈉水解高製氫研究

Study of catalytic high hydrolysis of sodium borohydride by foam catalyst

指導教授 : 蘇艾
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


本研究中設計出之新式的反應器,加上純度較高之硼氫化物與Ru/Ni作連續流動的情形下,經催化水解產氫後可得到高純度、高產量之氫氣,由於氫氣的方便及高穩定性,使用各個wt.%濃度不同之硼氫化鈉、氫氧化鈉作測試,在各個實驗中產氫值最佳的條件下篩選,以作為後續產氫水解之實驗,將以實驗中測試其3小時長的產氫值,測試單片觸媒配予不同流量的測試,以1片觸媒1 mL/min之流率為佳,最後以多片觸媒配合當量流量並觀察其各流量之效率值,以求得實驗之高產氫率。研究中,可得知其實驗結果效率為最佳者,是以使用硼氫化鈉濃度20 wt.%、氫氧化鈉濃度 3wt.%作為最佳輔助之燃料水溶液,在進料率為1mL/min時,測出其產氫值可達0.48 mL/min,效率可達97%,在3小時的測試時間內,其效率仍為一穩定性與低溫質子交換膜燃料電池作測試時,可整合成一系統並達穩定產氫;以當量觸媒與溶液測試其產氫值時,發現在5片觸媒5 mL/min時,其產氫效率以產氫量2.43 mL/min可達97%為最佳測試結果。

並列摘要


A new reactor had been designed in this reaserch. Flowing with high purity sodium borohydride solution and reactive with Ru/Ni catalyst, the reactor can produce a large number of high purity hydrogen. According to hydrogen is convenience and has high stability, we use different weight percents of sodium borohydride and sodium hydroxide for testing. In every experiment, we choose a best data of producing hydrogen into the continually hydrogen hydrolysis experiment. The research uses different solution inputs for single piece and each experiment capacity based on three hours. The best data of output flow rate is 1 micro liter per minute. Finally, we got a high producing hydrogen rate by using pieces catalyst and fine equivalent concentration. In this research, we got the most efficient producing prescription are using 20 percent weight of sodium borohydride and 3 percent weight of sodium hydroxide for hydrolysis solution. When input rate is 1 micro liter per minute, we got the producing output is 0.48 micro liters per minute, the efficiency is 97%. In this 3 hours experiment, the reactor has stable efficiency and applied in a low temperature PEMFC (Proton Exchange Membrane Fuel Cell). And we got a best testing result which is using 5 pieces catalyst and 5 micro liters per minute solution. The result data of hydrogen producing is 2.43 micro liters per minute, the efficiency is 97%.

參考文獻


(1) R. Aiello, J.H. Sharp, M.A. Matthews, 1999, “Production of hydrogen from chemical hydrides via hydrolysis with steam,” International Journal of Hydrogen Energy, Vol. 24, pp.1123-1130.
(2) S.C. Amendola, S.L. Sharp-Goldman, M.S. Janjua, M.T. Kelly, P.J. Petillo, M. Binder, 2000, “An ultrasafe hydrogen generator: aqueous, alkaline borohydride solutions and Ru catalyst,” Journal of Power Sources, Vol. 85, pp.186-189.
(3) S.C. Amendola, S.L. Sharp-Goldman, M.S. Janjua, N.C. Spencer, M.T. Kelly, P.J. Petillo, M. Binder, 2000, “A safe, portable, hydrogen gas generator using aqueous borohydride solution and Ru catalyst,” International Journal of Hydrogen Energy, Vol. 25, pp.969-975.
(4) Y. Kojima, K. Suzuki, K. Fukumoto, M. Sasaki, T. Yamamoto, Y. Kawai, H. Hayashi, 2002, “Hydrogen generation using sodium borohydride solution and metal catalyst coated on metal oxide,” International Journal of Hydrogen Energy, Vol. 27, pp.1029-1034.
(5) Y. Kojima, K. Suzuki, K. Fukumoto, Y. Kawai, M. Kimbara, H. Nakanishi, S. Matsumoto, 2004, “Development of 10 kW-scale hydrogen generator using chemical hydride,” Journal of Power Sources, Vol. 125, pp.22-26.

延伸閱讀