燃料電池會受溫度、流量及壓力等環境條件影響,不同的條件則直接會影響燃料電池輸出的電位、電流及功率。然而環境條件的不均勻性仍存在於燃料電池內部各區域,因此燃料電池的水熱管理相當急需觀察及控制。 過去水熱條件的觀測研究中,大多以mm尺度的感測器進行侵入式測量。本研究為降低感測器對燃料電池性能的影響,以微機電製程將感測器微縮至μm尺寸,以非侵入式測量的方法進行燃料電池的觀測。研究架構主要分成二大部分:1. 可撓式微型感測器之製作:以微機電製程製作整合式微型感測器,製作於40μm厚的不鏽鋼材料上;2. 燃料電池內部局部監測:將微型感測器埋置於燃料電池內,即時監測燃料電池其溫度、流量、壓力值與輸出性能與現象分析。 本研究已成功開發出整合式微型壓力、溫度、流量感測器,並嵌入單電池質子交換膜燃料電池中測量。在0.1A/cm2設定下(RH50%),其反應不劇烈、上、下游溫度較平均。而當加濕至RH100%時,則入口溫度則因積水問題下降。1A/cm2下,其電化學反應劇烈,上游溫度高於熱電偶2.7°C,而下游則因積水問題溫度為62°C。
Temperature, flow and pressure are critical parameters which affect fuel cell performance such as potential, current and power density. Therefore, monitoring non-uniform temperature/flow rate/pressure inside a proton exchange membrane fuel cell (PEMFC) is an essential issue. In order to avoid performance of PEMFC decreasing, this research reduces the size of sensors to μm scale by Micro-Electro-Mechanical System (MEMS). Therefore, non-invasive measurement inside a PEMFC is verified. This research work is mainly divided to two parts: 1. Fabrication process of flexible micro sensors on a stainless steel substrate by MEMS; 2. Embedding sensors into a PEMFC, and monitoring local temperature/flow rate/ pressure of PEMFC and cell performance. The integrated flexible micro sensors were fabricated successfully. Sensors were embedded into a PEMFC to measure local pressure, temperature, and flow rate. Temperatures of upstream and downstream of the PEMFC are 64.8 °C and 64.7°C (RH50%; 0.1 A/cm2); 62.7 °C and 64.3°C (RH100%; 0.1 A/cm2). The temperature difference between thermal couple and sensor is 0.8°C. Temperature of upstream and downstream is 66.2 °C and 62°C (RH50%; 1 A/cm2). The maximum difference is 4.2°C.