在本論文中,我們針對「正規化分割區塊式適應濾波器」(NBLMS)在收斂狀況下之步階增益範圍的分析與討論,並且發現其步階增益範圍並非一般認知的0與2之間,而是落在0與2L之間,其中L為NBLMS演算法的區塊長度。這個發現可以增加NBLMS演算法的實用性,我們會用大量的實驗來證明我們的分析。
In this thesis, we present an analysis on the step-size bound that guarantees the stability of the normalized block LMS algorithm(NBLMS),and discover that the step-size bound for the NBLMS is not bounded in (0,2) as we know, but is bounded in (0,2L) for convergence, which L is block length. This finding makes NBLMS much more practical. Extensive simulation results are provided to support our analysis.