在變壓器外殼內的流場現象相對於變壓器具有舉足輕重的影響,因此若是在分析變壓器外殼內的流場現象方面能有更進一步的發展,將有助於變壓器的設計。變壓器是一種可將不同電壓系統之電能作任意有效連結之器械,也是現今工業動力的主要來源。因此本研究乃利用Fluent Inc.所研發之專業流場計算分析軟體Fluent模擬變壓器之溫度場。在電腦利用該軟體執行流體流動數值模擬之下,可迅速得知實際設計之溫升結果,減少高昂的實機試驗成本,可在製造初期即能確保品質,並縮減生產時程。另外,將模擬之數據及資料作深入之分析、分類、及儲存,除可作為進一步研究之根據外,亦有利於協助日後變壓器溫升異常之研判。 本研究將針對一60 MVA 161kV油浸式電力變壓器在實際運轉之自冷狀況下,依鐵心與繞組因負載損失、發熱,進而產生之溫升效應進行模擬,並將所得物理量與變壓器實際成品之溫升試驗數據進行比較,驗證我們所模擬結果的準確性。 本研究計畫探討油浸式電力變壓器於迫油風冷狀態下內部自然對流之溫度與流場,並與變壓器理論計算及實際試驗佐證比對,以探討Fluent軟體利用於變壓器溫升模擬之合宜性與應用程序及法則。分析結果顯示,模擬個案在變壓器鐵心、繞組等方面均有合理之吻合度,同時推算所得之最高溫位置可做為變壓器溫度感測器設置位置之參考。此外,可進行變壓器散熱器配置方式之進階研究,提前驗得知溫升試驗結果,並減少漫長之實驗時間與降低開發該產品之成本。本文研究所建立之分析程序與法則未來將對油浸、乾式、模鑄、氣體絕緣等各式變壓器之進階研究具實質助益。
The flow field inside the tank of the transformer has a major impact on the performance of the transformer. Therefore, it is helpful for the design of the transformer if there is the development on analyzing flow field of the tank. Transformer is an effective for the connection of tow power systems and a major power source for the industry. In this study, Fluent Company developed a software analyzing flow field calculation, to simulate the temperature of the transformer. Using this software in the computer to conduct the simulation for flow value, it can learn the result of temperature rise quickly, and reduce the high cost of test. Also, it can ensure the quality at initial stage of manufacturing, and shorten the production time. In addition, the simulated data and information are analyzed, classified and stored can not only be the basis of research but be helpful for judge the result of abnormal temperature rise of transformer. This study is aim at a 60MVA, 161kV oil-immersed transformer in self-cooled operation is conducted to simulate the temperature rise of core and winding caused by load loss and heat, and compare with the physical quantities and temperature rise data of transformer to verify the accuracy of the simulated result. This study investigated the temperature and flow fields of an oil-immersed transformer with internally natural convection in oil-forced cool situation, and compare with transformer theory calculation and actual test to discuss the appropriateness, application program and rules of Fluent software use for simulation of temperature rise. The result showed that the simulated case coincided logically at core and winding of the transformer. Meanwhile, it can calculate the highest temperature position which can be the reference for temperature sensor of transformer. Furthermore, it can conduct the advanced research of radiator assembly for transformer, and learn the test result of temperature rise earlier. This also could reduce the test time and the cost for developing the product. The methodology and procedure established by this study can be helpful for the research of such as oil-immersed, dried, molded, gas insulated transformer.