電子產品在上市之前通常都須經過一系列的可靠度測試,其中又以熱循環測試(Thermal Cycling Test-TCT)最為廣泛應用。但因其熱循環測試耗時甚久,往往造成測試瓶頸。因此,瞭解相關測試參數對壽命之影響,有助於縮短開發時程,甚至以需時較短之機械性彎曲與剪力測試等取代,都是亟需對熱循環測試有基礎性之研究與瞭解。 因此,本文主要就熱循環測試之若干關鍵測試參數做探究,分別就一般溫度範圍之熱循環測試及更嚴苛溫度範圍之熱循環測試,以目前普遍使用之覆晶球柵陣列構裝元件,進行一系列變更測試參數之測試與分析。同時利用相關疲勞理論計算出疲勞壽命。並利用四點彎曲循環測試,模擬出符合熱循環測試下之應力與應變,探討出其疲勞測試壽命與可靠度之關聯性。研究也藉由有限元素法(FEM)進行錫球應力分析,估算出產品之熱應力應變並與實驗數據做比對。 研究針對一般溫度範圍之熱循環測試及更嚴苛溫度範圍之熱循環測試變更其不同之設定參數後進行實驗,由實驗結果顯現,溫度循環測試之溫變率及溫度範圍皆會影響其測試元件上所產生之熱應力及熱應變讀值大小,高溫變率及溫度範圍較高之環境,會使試片產生較大之應力應變,並且直接影響試片壽命,並發現更嚴苛之溫度範圍所產生之應變也大於由溫變率所產生的應變。而藉由一般溫度範圍之熱循環測試(0~100℃)之實驗,直至試片損壞可得知試片壽命,再代入計算壽命之反冪次方程式,可以得到該公式中之相關材料參數,並應用此公式可推估出更嚴苛溫度範圍之熱循環測試(-55~150℃)之壽命。而此推估之理論壽命進而與實際溫度範圍為-55~150℃之熱循環測試所得之試片壽命進行比較。由實驗結果與理論計算結果誤差為69.2%、25.4%及15.3%,受限於樣本數較為明顯不足使誤差值變動較大,但前述使用此加速因子關係推估壽命之最佳誤差已達15.3%。因此使用此方法不僅可預估試片之壽命,而據此也可推估其他實際測試需時較久的一般溫度範圍之熱循環實驗之試片壽命,可大幅減少測試時間。
Electronic products have to go through a series of reliability test before they are launched to market. Thermal Cycling Test (TCT) is the most widely used test among these reliability tests. However, it often takes too much time thus causes a bottleneck in the test lab loadings. Therefore, Thermal Cycling Test is usually replaced by the mechanical bending test and shearing test owing to the shorter testing time. But what is the difference between thermal stress and mechanical stress during the Thermal Cycling Test of electronic components? Then we have to discuss their relationship before using the replaced way. For this reason, this paper is mainly talking about the basic theories of Thermal Cycling Tests. Accelerating the Thermal cycling test by Low Temperature Range Thermal Cycling Test and the high temperature range individually, making a series of tests for commonly used Flip Chip Ball Grid Array, and estimate the fatigue life by fatigue theory at the same time. Then using four-point bending test, assuming the stress and strain under the Thermal cycling Test, and discuss the relationship between fatigue life and reliability. Also by Finite Element Method (FEM) to analyze Solder ball’s stress, estimating the thermal stress of products and comparing with the experimental data. This paper tests Thermal Cycling Test and Accelerating Thermal Cycling Test from different controlling parameters. According to the experimental data, not only the temperature rate but the temperature range of Thermal Cycling Test will influence the thermal stress, strain and sample’s life directly. Finding sample’s life by Low Temperature Range Thermal cycling Test (0~100℃), then using Inverse Power Equation to calculate the parameter of material and estimate Accelerating Thermal Cycling Test (-55~150℃) life. Compare the theory life with the test of Accelerating Thermal Cycling Test (-55~150℃) life of examples. Though the samples were not enough to reduce error, it was still in an accept range by accelerating factor relationship. Therefore, we can use this way to estimate the sample’s life more effectively by using Accelerating Thermal Cycling’s experimental data in Low Temperature Range Thermal Cycling Test’s calculation.