在本論文研製之下肢輔具外骨骼之製作,其優點在於能夠增強人下半身之出力與保護下肢關節。此輔具與傳統輔具不同,兼具智慧型演算法和感應器結構,並且零件為可替換式,適合任何人使用,並且多了外骨骼保護及支撐,將使其更為安全。此外,電動缸及單晶片控制器的選用使得此機構更具便攜性,不需要帶著龐大的氣瓶,讓使用者可以穿著四處行走。簡單的人體姿態感測器讓使用者的做出想要的動作如走路、上下坡、起立或蹲下,而不需要消耗龐大的時間做身體訊號的抓取、濾波以及有雜訊擾動而造成系統失控的情形。我們選用傳統模糊控制器、傳統比例積分微分(PID)控制器及適應性比例積分微分(APID)控制器,三種控制方法比較,傳統模糊控制器及傳統比例積分微分控制器皆是利用使用者經驗所設計,為控制非線性系統中簡單又實用的控制器。然而實際上,可能出現馬達負重時干擾馬達動作等不確定因素出現。因此提出適應性PID控制器,藉由李亞普諾夫定理(Lyapunov theory)推導其學習速率且以達誤差之收斂,以降低外部干擾對馬達影響,並快速追隨到使用者期望之位置。並透過外骨骼系統之實驗結果證實在角度追隨上有較佳的成效。
This study describes the design and implementation of an low limb exoskeleton control system. The main purpose of this system is that it can allow those with walking problems to get back their ability to walk, or enhance human low limb force and protect lower extremity joints. Unlike the traditional one this orthosis combine intelligence algorithm and sensor driver system, and all the components in this device are design to be removable and wearable, suit for every user to protect and support human body. Moreover, using the linear actuator made this device much more portability, without carry on heavy gas cylinder, that user can wear it walk around. Human action sensor design made user move to exactly what they want, for example, walking, climbing uphill or downhill, or sitting to stand, without consuming huge time to do physical signal capture and filter, however there are still a lot of noisy disturbance to make the system out of control like heavy load. In the matter of fact, heavy load on motor can still affect motor property. Therefore, we adapt the model-free adaptive PID controller to reduce these external disturbances for quickly following the human expect position but not increase the heavy work on single-chip processor.