透過您的圖書館登入
IP:52.14.126.74
  • 學位論文

合成石墨烯複合陽極材料以應用於鋰離子電池

Synthesis of Graphene-based Anodes for Lithium-ion Batteries

指導教授 : 謝建德
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


本研究分三部分:第一部分嘗試利用氧化錳奈米粒子(MnO)嵌入石墨烯奈米薄片(Graphene nanosheets, GNs)中探討其鋰離子電池之電性表現;而第二部分則探討了不同結構的奈米銀金屬嵌入GNs中之鋰離子電池電性表現;第三部分研究六方纖鋅礦之奈米氧化鋅顆粒嵌入GNs中之鋰離子電池電性表現。 第一部分研究,MnO利用簡單的液相化學法結合熱還原法合成氧化錳/石墨烯複合陽極材料。在GNs上均勻分佈的MnO經由穿透式電子顯微鏡觀察得之約20-40 nm左右。氧化錳/石墨烯複合陽極材料在0.2 C的充放電速率下提供了635 mAh/g的可逆電容量。石墨烯在這其中扮演了一個緩衝效應(Buffer effect)的角色,使其複合材料擁有高庫倫效率(92.7%)及高電容量維持率(Capacity retention (5 C/0.2 C)>70%),此優越的性能表現說明了氧化錳/石墨烯複合陽極材料在鋰離子電池方面的應用為可行的。 第二部分研究,利用微波輔助法合成不同奈米結構之奈米銀金屬,接著利用液相化學法結合熱還原法合成奈米銀粒顆粒/石墨烯(Ag-NP-GN)及奈米銀線/石墨烯(Ag-NW-GN)複合材料。奈米銀顆粒粒徑大小約80-100 nm之間,奈米銀線直徑約100 nm。Ag-NW-GN在0.1 C的充放電速率下提供了1723 mAh/g的高充電電容量及較低的不可逆電容量,且高電容量維持率((5 C/0.1 C)>65%)。 第三部分研究,利用微波輔助法合成六方纖鋅礦結構之氧化鋅納米顆粒,接著利用濕式化學法與熱還原法合成氧化鋅/石墨烯(GN-ZnO)複合陽極材料。氧化鋅顆粒粒徑約100 nm。GN-ZnO-1在0.1C的充放電速率下提供了1048 mAh/g的高充電電容量及較低的不可逆電容量,且高電容量維持率((5 C/0.1 C)>60%)。

並列摘要


This research can be divided into three parts: the intercalation of (1) MnO nanoparticles, (2) Ag nanoparticles and nanowires, and (3) ZnO nanoparticles into graphene nanosheets (GNs), forming three-dimensional hybrids as anode materials for high-performance Li-ion batteries. (1) A composite of GNs supported by MnO nanocrystals has been fabricated through a simple chemical-wet impregnation followed by the thermal reduction route. The hybrid contains of MnO nanoparticles with an average size of 20-40 nm uniformly dispersed on GNs as observed by transmission electron microscopy. The MnO/GN composite anode delivers a reversible capacity of 635 mAh/g at 0.2 C. The GN plays a buffer effect role in this hybrid material that improves the Coulombic efficiency (92.7%) at the 1st cycle and rate capacity (capacity retention (5 C/0.2 C)>70%). This illustrates the superior performance of MnO/GN composite anode in Li-ion batteries. (2) An efficient microwave synthesis was employed to fabricate different structures of Ag nanostructures, i.e., nanoparticles and nanowires. The simple chemical-wet impregnation followed by the thermal reduction route was adopted to prepare Ag nanoparticles/GN (Ag-NP-GN) and Ag nanowires/GN (Ag-NW-GN) anode materials. The Ag-NW-GN composite anode material delivers a high capacity of 1723 mAh/g at 0.1 C, a low irreversible capacity at 1st cycle, and an improved rate capability (capacity retention (5 C/0.1 C) > 65%) as well. (3) The hexagonal ZnO nanoparticles were synthesized by using the microwave-assisted method. Again, the simple chemical-wet impregnation followed by the thermal reduction route was applied to fabricate ZnO nanoparticles/GN (GN-ZnO) composite anode materials. The hybrid, consisted of as-grown ZnO nanoparticles with an average size of 100 nm, exhibits a well-defined wurtzite crystal structure. Experimental result showed that the GN-ZnO composite anode displays a high capacity of 1048 mAh/g at 0.1 C, a low irreversible capacity at 1st cycle, and an enhanced rate capability (capacity retention (5 C/0.1 C) > 60%) as well.

參考文獻


64. 胡慶忠,氧化鋅鋁透明導電膜在氮化鎵上歐姆接觸特性研究,國立中山大學光電科學研究所 (2005)。
1. J.M. Tarascon, M. Armand, Nature 414 (2001) 359.
2. H. Kim, D.H. Seo, S.W. Kim, J. Kim, K. Kang, Carbon 49 (2011) 326.
6. J. Yao, X. Shen, B. Wang, H. Liu, G. Wang, Electrochem. Commun. 11 (2009) 1849.
8. P. Guo, H. Song, X. Chen, Electrochem. Commun. 11 (2009) 1320.

延伸閱讀