透過您的圖書館登入
IP:3.137.161.222
  • 學位論文

石墨烯/奈米碳材複合材料之合成及其電容效能研究

Synthesis and capacitive performance of graphene/nanocarbon composites

指導教授 : 廖建勛

摘要


本研究製備石墨烯/奈米碳材複合材料,並探討其電化學電容性質。石墨烯為良好的超級電容器電極材料,但由於其本身不溶於水,使其應用受到限制,因此為了增加石墨烯的運用價值,將石墨表面藉由官能基來加以改質,可得到水溶性的氧化石墨(GO),並測得其比電容值在0.3A/g電流密度下為60.12 F/g。更進一步利用氨水將氧化石墨表面改質而成氨化氧化石墨(nGO),作為複合材料的基底。葡萄糖碳水化合物 (GC)因其特性及應用已引起一股研究熱潮,本研究分析不同方法合成GC及以不同比例合成複合材料之間的差異。為了增加電容值,將葡萄糖碳水化合物接於氨化氧化石墨的表面,並推測會增加其表面積。石墨烯/奈米碳材複合材料的合成方法簡單,可提升比表面積高達201.3 m2/g,且其最高比電容值在0.3A/g電流密度下可達287.7 F/g,而在2A/g電流密度下仍然維持有151.14 F/g。經由本研究可證明石墨烯/奈米碳材複合材料對於單純氧化石墨、氨化氧化石墨及葡萄糖碳水化合物有較高比表面積及穩定的比電容值。

並列摘要


Graphene was regarded as an excellent material for supercapacitors. Due to hydrophobic behavior of graphene, here used modified Hummers method to prepare hydrophilic graphene oxide (GO). It had specific capacitance 60.12 F/g at 0.3A/g. GO further aminated with ammonia aqueous solution to obtain a modified aminated graphene oxide (nGO) for continued study. Glucose carbohydrates (GC) had aroused lots of attentions because they were environmental friendly and nontoxicity. Herein compared difference of GC prepared by microwave-assisted synthesis and reflux treated process. To increase specific capacitance, GC were bonded with nGO to obtain higher surface area; and r-2GCGO15 could greatly enhanced the surface area to 201.3 m2/g. Although they had different mechanism of electrochemical properties, the Cspe of n-2GCGO15 reached 287.7 F/g at 0.3A/g and still remained 151.14 F/g at 2A/g. According to results, GCGO composites had greatly enhanced the surface area and electrochemical properties than precursor materials (GO,nGO and GC).

參考文獻


[1] H. D. Abru#westeur050#a, Y. Kiya, and J. C. Henderson, “Batteries and electrochemical capacitors,” Physics Today, vol. 61, no. 12, pp. 43-47, 2008.
[2] A. Lewandowski, and M. Galinski, “Practical and theoretical limits for electrochemical double-layer capacitors,” Journal of Power Sources, vol. 173, no. 2 SPEC. ISS., pp. 822-828, 2007.
[3] B. E. Conway, and W. G. Pell, “Double-layer and pseudocapacitance types of electrochemical capacitors and their applications to the development of hybrid devices,” Journal of Solid State Electrochemistry, vol. 7, no. 9, pp. 637-644, 2003.
[4] A. Laforgue et al., “Hybrid Supercapacitors Based on Activated Carbons and Conducting Polymers,” Journal of the Electrochemical Society, vol. 148, no. 10, pp. A1130-A1134, 2001.
[6] H. W. Kroto et al., “C60: Buckminsterfullerene,” Nature, vol. 318, no. 6042, pp. 162-163, 1985.

延伸閱讀