透過您的圖書館登入
IP:18.223.172.252
  • 學位論文

以脈衝式微波輔助合成法製備奈米鉑錫觸媒於複合碳電極及其電化學特性研究

Pulse Microwave-assisted Synthesis and Characterization of Pt-Sn Nanocatalysts on Carbon-based Electrodes

指導教授 : 謝建德

摘要


本研究以脈衝式微波輔助合成法製備奈米鉑錫觸媒,並以循環伏安法測試氧還原反應、甲醇氧化及甲酸氧化等電化學特性。脈衝式微波輔助合成法可控制沉積於奈米碳管上鉑錫觸媒原子比。由實驗結果顯示可得知鉑錫觸媒均勻分散且顆粒介於2.72-3.66 nm。與鉑觸媒相比,摻雜適量的錫(25%)不僅可提升電催化活性,還可增加長時間抗毒化能力。鉑錫觸媒在性能上的提升可歸因於雙金屬觸媒的雙功能機制,鉑的活位優先吸附CO,而錫的活位則會優先形成OH。摻雜錫使得CO從鉑活位上脫附,因此增加了鉑錫觸媒的抗CO毒化能力。不需其他程序,脈衝式微波輔助合成法即可在短時間內製備出兼具良好電催化活性及耐久性之鉑錫觸媒,可應用於燃料電池。

並列摘要


The catalytic activities of Pt−Sn alloy nanoparticles with different Pt:Sn atomic ratios, prepared by a pulse microwave-assisted polyol (MP) method, in the oxygen reduction reaction and oxidation of methanol and formic acid have been examined by using cyclic voltammetry. The pulse MP approach enables the formation of Pt−Sn alloy nanoparticles with well-defined atomic ratios over the surface of carbon nanotubes. The as-prepared Pt−Sn nanoparticles display a homogeneous dispersion with a narrow crystalline size in the range of 2.72−3.66 nm. An appropriate amount of Sn dopants (25 at%) facilitates not only the catalytic activity but also the long-term anti-poisoning durability, as compared with pure Pt catalyst. The improved performance of Pt−Sn alloy catalyst is attributed to the bi-functional mechanism of bimetallic catalysts; that is, CO adsorption mainly occurs on Pt sites, while OH formation would take place preferentially on the Sn sites. Thus, the introduction of Sn offers one pathway to strip CO from the Pt–CO sites, thereby raising the CO tolerance. Without any treatment, the pulse MP synthesis emerges a feasibility to prepare Pt–Sn catalysts with excellent catalytic activity and long-term durability for fuel cell applications.

參考文獻


3. E.T. Thostenson, Z. Ren, T.W. Chou, Compos. Sci. Technol. 61 (2001) 1899.
14. C. Journet, P. Bernier, Appl. Phys. A 67 (1998) 1.
17. E.F. Caldin, J.P. Field, J. Chem. Soc. Faraday Trans. 1 (1982) 78.
19. S. Komarneni, R. Roy, Q.H. Li, Mater. Res. Bull. 27(12) (1992) 1393.
23. C.T. Hsieh, W.M. Hung, W.Y. Chen, Int. J. Hydrogen Energy 35 (2010) 8425.

延伸閱讀