透過您的圖書館登入
IP:216.73.216.60
  • 學位論文

應用型態技術於液晶顯示器模組檢測ACF 粒子之研究

Improve Morphology Method for Automatic Inspection of Anisotropic Conductive Film of LCM Process

指導教授 : 謝君偉
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


由於液晶顯示器市場在消費性電子產品的應用與需求量日益增加,使得面板廠液晶顯示器模組出貨量增加,各廠對於降低製造成本、提昇產品品質與降低價格等方面的努力,來提高獲利及市占率。在 TFT-LCD製程中,對於LCD面板內 ACF壓合後的檢查,大部份還是依賴人工檢查的方式進行,而檢查時會因人與精神狀態的不同,可能對產品產生不同的判斷標準且人工檢測的方式對於產能、品質的提升有很大的限制。 本篇論文主要研究是應用灰階型態技術於液晶顯示器模組段面板壓合製程上,對 ACF(Anisotropic-conductive film,異方性導電膜)的導電粒子在壓合後檢測是否有足夠 ACF粒子的數量。此研究使用影像處理技術包含:灰階型態運算、遮罩技術、Otsu 演算求最佳閥值二值化、高斯平滑處理、影像相減等。由實驗結果得知,我們的所提的方法可以將面板的 Pad 輪廓特徵找出並計算 Pad 區域內 ACF 粒子的數量是否符合要求。從實驗結果顯示粒子檢測精確度可達 85 % 以上。

並列摘要


Due to the demand of using TFT-LCD in customer product keeps increased by day to day, it causes the shipping quantity increased and each factory put strong effort on quality improvement and cost reduction in order to increase the margin and market share. Manual inspection is the most popular way to perform TFT-LCD process of ACF Bonding inspection at the present time. Due to the different level of mental condition, the workers may have different judgment during the exam process. Because of this, the possibility of increasing in capacity and quality has been limited. This thesis mainly applies Gray Morphology technology automatic Inspecting on whether the particle amount on IC pad is enough in LCM Process. The main technology include Gray Morphology ,Structure Element Size, Auto threshold by Ostu method , Gaussian filter , Connect component labeling were constructed in this measuring system.The inspection speed on LCD panel could be successfully and the average accuracy of defect recognition is more than 85%.

並列關鍵字

TFT-LCD ACF Morphology technology Otsu Gaussian filter

參考文獻


[15]光電科技工業協進會,“2009台灣平面顯示器展(參展介紹)”
[1]Chern-Sheng Lin, Kuo-Hon Huang, Yun-Long Lay, Kuo-Chun Wu, Yieng-Chiang Wu, Yieng-Chiang Wu and Jim-Min Lin “An improved pattern match method with flexible maskfor automatic inspection in the LCD manufacturing process”, Expert Systems with Applications p.p 3234–3239,2009
[2]S. R. Sternberg, “Grayscale morphology”, Comput. Vision, Graphics, Image Processing vol. 35, pp.333-355, 1986
[3]Otsu, N., 1979. “A threshold selection method from gray-level histograms,” IEEE Trans. Sys., Man., Cyber., vol. 9, pp. 62–66.
[7]蔡培林,中央大學,”LCD 彩色濾光片的瑕疵擷取與分類”,2008

延伸閱讀