透過您的圖書館登入
IP:18.218.89.173
  • 學位論文

受體模式對大學校園總懸浮微粒污染源分析之應用研究

The Application Study of the Receptor Model for the Sources and Characteristics of Total Suspend Particle in One School Campus

指導教授 : 江右君

摘要


本研究藉由採樣分析及統計分析推導等方法,來探討大學校園總懸浮微粒污染源分析之應用。並在不同的環境下,如:不同測站、不同材質(濾紙)等因素,來分析懸浮微粒之重量濃度及化學元素組成。 為瞭解大學校園地區懸浮微粒濃度之來源及特性,於92年3月至93年3月間在北部某大學B1、B2等兩個測站以24小時為採樣時間,日夜進行同步之例行採樣,並於92年8月進行密集採樣,分析總懸浮微粒之重量濃度,並利用統計方法做因子分析,來推估大學校園懸浮微粒之各種污染源及其貢獻之比例。 在總懸浮微粒(TSP)年變化量分析結果中顯示,兩測站之總懸浮微粒採樣樣品數目共有一百二十六次,每測站各有六十三次,B1測站之年平均濃度(68.15µg/m3)較低於B2測站之年平均濃度(70.40 µg/m3),而依濃度範圍來看,B1測站之年濃度範圍最小值為19.85µg/m3,最大值為142.06µg/m3,區間顯示較B2館穩定,而B2測站之年濃度範圍最小值為11.51µg/m3,最大值為149.48µg/m3,區間顯示較不穩定,但TSP平均濃度值皆未超過環保署訂定之標準250µg/m3(24小時值空氣品質的排放標準值)。而在化學元素分析變化分析之結果中可知樣本中以Na與S元素含量最高,其他元素如Al、Ca、Fe、K等濃度值皆為全年度次高,而Pb、Zn再次之,而元素As、Cd、Cr、Ni、Sb、Sr和V含量最低,甚至有部分在儀器偵測極限以下。因子分析結果方面,因受其來源之影響,風蝕揚塵中大量存在的鈣(Ca)、鎂(Mg)、鋁(Al)、鐵(Fe)等地殼元素以及海水飛沫產生後蒸發所形成的鈉(Na ),此種由自然界中產生的物種,以及由工業區大型燃燒程序所排放的懸浮微粒,如銅(Cu)、鉛(Pb)、鎳(Ni) 等來自於木材、油類燃燒或焚化爐燃燒;至於汽、機車等交通污染源排放廢氣中含鉛(Pb)微粒,及輪胎所產生的鋅(Zn),分析結果顯示本研究採樣分析數據均指出土壤或街塵、交通及燃燒污染源是本地區懸浮微粒之主要成份,除因季節性濃度變化外,並無太大差異。本研究亦嘗試運用受體模式解析懸浮微粒之污染來源,研究結果顯示影響最大者為燃燒污染源、風蝕揚塵土壤污染源、交通污染源、海鹽飛沫污染源等等之貢獻為最。根據環保署資料,距本研究最近之大氣測站為中壢五權測站,在本研究63個採樣日中,指標污染物為懸浮微粒者有37天,佔58.73%,指標污染物為O3者有25天佔39.68%,無法評估佔1.58%,其中指標污染物為懸浮微粒者有58%以上,因此探討懸浮微粒的來源及特性,建立本土化大學校園總懸浮微粒濃度及化學組成資料庫,以期將會有助於不同的污染源提出相關的管制策略,來改善國內之校園空氣品質。

並列摘要


Under various environmental situations, such as different evaluation stations, different materials (or filter papers), this study explores the source of total suspended particle (TSP) at the school campus by using the sampling analysis and statistical evaluation methods, and conducts to analyze the dose and chemical components among TSP characteristics. This study collected TSP characteristics and sources from B1 and B2 stations at one university between March 2003 and March 2004. Data collection was 24 fours a day, and this study conducted a highly concentrated sampling in order to analyze the dose among these TSP. Factor analysis was employed to predict kinds of pollution sources and each percentage of the contribution at the school campus. According the changing trend of TSP, in total, there have 126 samples in two stations (each one has 63 samples). For the average dose, B1 station (68.15µg/m3)was lower than B2 one (70.40 µg/m3); for the range of dose, in comparison of B2 (11.51µg/m3 and 149.48µg/m3), B1 was more stable with the range between 19.85µg/m3 and 142.06µg/m3. In general, both average doses of TSP within B1 and B2 stations did not go beyond the EPA’s standard, that is 250µg/m3. For the changing trend of chemical elements, this study showed elements of Na and S were the highest ones, and followed by the elements of Al, Ca, Fe, K, Pb, Zn, but the elements of As, Cd, Cr, Ni, Sb, Sr, and V were the lowest ones. From the factor analyses, this study demonstrated that all of the elements of Ca, Mg, Al, and Fe coming from the dusts, Na from the earth’s crust, Cu, Pb, Ni from the wood, oil, and an incinerator’s combustions, and Pb from the source of transportation, and Zn from the tire combustion. The receptor model was employed of this study and found that the principal components of TSP were soil erosion, dusts, crusts, traffic transportation, and combustions. The index pollution sources were 37 days (58.73%), O3 were 25 days (39.68%),and only 1.58% could not estimate its dose. Over 58% index pollution sources were TSP. The further study should conduct more samples from multiple school campuses and to explore the sources and characteristics of TSP in order to improve our quality of air in schools.

參考文獻


10.行政院環境保護署,「環境白皮書」,1996、1997。
11.行政院環境保護署,「八十九年度環保科技學術合作計劃」,民國89年。
之確立」,行政院環境保護署報告,1990。
26.唐盛林、林國銓,「觀音工業區空氣微粒之觀測及初步鑑定」,林業試驗所研
27.「環境保護辭典」,中華民國環境工程學會,1997。

延伸閱讀