透過您的圖書館登入
IP:3.149.233.104
  • 學位論文

單獨後十字韌帶受傷患者之功能性適應

Function Adaptation in Patients with Isolated Posterior Cruciate Ligament Injury

指導教授 : 周伯禧
共同指導教授 : 林槐庭(Hwai-Ting Lin)

摘要


背景:對於單獨後十字韌帶斷裂患者的治療方法一直相當具有爭議,有些患者在經過保守性復健治療後即可回復受傷前之生活功能(適應良好者,coper);有些患者接受保守性復健治療後,膝關節不穩定及疼痛等症狀依舊存在,需要用後十字韌帶重建手術來恢復膝關節的機械性穩定度(適應不良者,non-coper)。本篇將進一步探討適應良好組與適應不良組患者之間在膝功能量表、肌力及從事日常生活動作之生物力學分析。 目的:本研究目的為探討後十字韌帶受傷之患者在僅接受保守性復健治療的情況下,透過肌力,及下肢(髖、膝、踝關節)之生物力學參數,瞭解恢復良好者其達成日常功能性活動之代償機制為何,提供後十字韌帶受傷患者適應策略之建議,進而藉此擬訂更完善的訓練計畫。 研究方法:本實驗選取單獨後十字韌帶斷裂且接受3個月以上保守性治療後,適應良好組患者與適應不良組各10位,以及健康的控制組10位,進行膝功能量表、各項物理檢查、肌力、本體感覺之測量,並利用動作分析系統觀察功能性動作之生物力學分析(步態、上下樓梯、全蹲、落地跳及垂直跳),比較三組間各項參數之差異。統計方法部份使用單因子變異數分析(One-way ANOVA)比較三組受試者間的各項數據;患、健肢之間的差異以配對t檢定(pair t-test)進行分析,設p<0.05達統計上顯著差異。 研究結果:Lysholm量表分數方面,控制組與適應良好組皆顯著高於適應不良組。肌力在角速度60º/s下,控制組與適應良好組之股四頭肌與腿後肌肌力顯著高於適應不良組。功能性動作方面,三組受試者在步態週期中各時期與上樓梯動作的關節角度與力矩皆沒有達統計上顯著性的不同,但適應良好組在步態著地中期的患肢髖關節力矩顯著地大於健肢;在下樓梯動作中,適應良好組在對側腳著地時患肢膝關節的彎曲角度和伸直力矩小於健肢;全蹲時,控制組的膝關節屈曲角度顯著大於適應不良組,伸直力矩方面,控制組的膝關節力矩顯著大於適應良好組,而適應良好組又顯著大於適應不良組。在落地跳動作中,著地時適應良好組的負荷速率會大於適應不良組,地面反作用力則是控制組與適應良好組皆顯著大於適應不良組。三組受試者在垂直跳的高度上有明顯的差異,而負荷速率並無顯著差異,另外,適應不良組之最大地面反作用力顯著小於控制組與適應良好組(p=0.0217)。 結論:股四頭肌與腿後肌為穩定下肢的重要肌群,維持良好的肌力為最重要的適應策略之一。再者,適應良好組患者會利用較少的膝關節彎曲及力量轉移來減少患肢膝關節的負荷,發展出一套適應策略,使得患者可自在的從事日常生活動作。故此研究建議針對髖關節伸肌、膝關節伸肌及踝關節蹠屈肌群做訓練,將可使患者藉由保守性治療恢復至其受傷前的膝關節功能。

並列摘要


Background: The treatment of isolated posterior cruciate ligament (PCL) injury remains controversial. Copers are patients who can return to their previous activities with non-operative treatment. On the other hand, non-copers are patients who complain about knee pain and knee instability after non-operative treatment. These symptomatic patients often require surgical management to restore their knee function. Purpose: The purpose of this study is to investigate the muscle strength and biomechanical differences between copers and non-copers, in order to find out the adaptation strategy in copers. Method: Twenty isolated posterior cruciate ligament injured patients and ten normal subjects were recruited in this study. These subjects were divided into three groups, coper, non-coper and control group respectively. The knee questionnaire、physical examinations、muscle strength and proprioception were tested. The Qualysis motion capture system was used to collect the biomechanical data during functional tasks. One-way analysis of variance was used to compare the data between three groups, and pair t-test was used to compare the differences between involved and non-involved leg. Results: The Lysholm score and muscle strength were significantly greater in control and coper groups than non-copers. In mid-stance of the gait analysis, the involved hip of the copers demonstrated greater moment than the non-involved side of the copers. The knee flexion angle and extension moment were less in the involved side of copers when descending stairways. Knee-joint peak extension momenton the non-involved side was significantly greater than at their involved side when squatting. During drop landing, the ground reaction force and loading rate in non-copers were lower than other two groups. The jump height and ground reaction force were significantly lower in non-coper group. Conclusion: Maintaining good quadriceps and hamstrings muscle strength are one of adaptation strategies of coper because of their function to stabilize lower leg. The coper patients develop some strategies to decrease the loading of involved knee by keeping less knee flexion and tend to shift the loading to hip and ankle joint. Consequently, a rehabilitation program can be designed to strengthen the Quadriceps, and the ankle flexors in order to help patients with PCL deficiency.

參考文獻


1. Geissler, W.B. and T.L. Whipple, Intraarticular abnormalities in association with posterior cruciate ligament injuries. Am J Sports Med, 1993. 21(6): p. 846-9.
2. Race, A. and A.A. Amis, The mechanical properties of the two bundles of the human posterior cruciate ligament. Journal of Biomechanics, 1994. 27(1): p. 13-24.
3. Harner, C.D., et al., The human posterior cruciate ligament complex: an interdisciplinary study. Ligament morphology and biomechanical evaluation. Am J Sports Med, 1995. 23(6): p. 736-45.
4. Castle, T.H., Jr., F.R. Noyes, and E.S. Grood, Posterior tibial subluxation of the posterior cruciate-deficient knee. Clin Orthop Relat Res, 1992(284): p. 193-202.
5. Gollehon, D., P. Torzilli, and R. Warren, The role of the posterolateral and cruciate ligaments in the stability of the human knee. A biomechanical study. J Bone Joint Surg Am, 1987. 69(2): p. 233-242.

延伸閱讀