透過您的圖書館登入
IP:18.191.240.243
  • 學位論文

1.含醯胺、磺醯胺配基之鋁金屬錯合物之合成及其對ε-環己內酯開環聚合之催化應用 2.含醯胺、磺醯胺配基之鈉金屬錯合物之合成及其對L-乳酸交酯開環聚合之催化應用

1.Synthesis of Aluminum Complexes with Amide or Sulfonamide Ligands, and The Application in the Ring-Opening Polymerization of ε-Caprolactone 2.Synthesis of Sodium Complexes with Amide or Sulfonamide Ligands, and The Application in the Ring-Opening Polymerization of L-Lactide

指導教授 : 陳喧應

摘要


1.本研究旨在探討新型的醯胺與磺醯胺基鋁金屬簇,用於催化己內酯(ε-caprolactone, CL)開環化聚合反應(ring-opening polymerization, ROP) 之應用。首先,以含特定官能基之醯氯分子與苯胺醯化,再與三甲基鋁反應,可成功地合成出醯胺基、磺醯胺基金屬簇LMeO-S-TolAlMe2、LiPr-S-TolAlMe2、LMeO-S-MeAlMe2、LiPr-S-MeAlMe2、LMeO-C-TolAlMe2、LiPr-C-TolAlMe2、LMeO-C-4-ClTolAlMe2、LiPr-C-4-ClTolAlMe2、LMeO-C-OMeAlMe2、LD-C-DAlMe2。將這些鋁金屬催化,發現含有醯胺基的新型鋁金屬錯合物LMeO-C-OMeAlMe2其效果最佳(1小時,轉換率90%,kobs.= 4.23×10-2 min-1)。最後,我們也藉由LMeO-C-OMeAlMe2之高活性,分別催化δ-valerolactone與α-bromo-ε-caprolactone之ROP反應,進而合成不同形式的聚合物PVL、PBrCL;此外,亦藉由LMeO-C-OMeAlMe2,並選用不同的起始劑N,N-dimethyl-ethanolamine、bis(2-hydroxyethyl)disulfide、200PEG、HOSSBr、HOCCBr、HOSSOH對ε-CL進行催化聚合,藉此,合成出新型的高分子材料。 2.高極性有機分子,例如二醇(diol),甚難與酯溶性的乳酸交酯(L-lactide)互溶並進行開環化聚合反應(ring-opening polymerization, ROP);本研究之特點,即是在於新型催化劑-醯胺、磺醯胺鈉金屬錯合物的研發與四氫呋喃/二甲亞碸(THF/DMSO)共溶劑法(co-solvent method)的使用技術,是為突破高極性起始物與丙交酯的開環共聚催化限制之首例。首先,以含特定官能基之醯氯分子與苯胺醯化,再與氫化鈉反應,可成功地合成出低路易士酸性的醯胺基、磺醯胺基金屬錯合物LMeO-S-TolNa、LiPr-S-TolNa、LMeO-S-MeNa、LiPr-S-MeNa、LMeO-C-TolNa、LiPr-C-TolNa、LMeO-C-4-ClTolNa、LiPr-C-4-Cl-TolNa。下一步,我們最佳化THF/DMSO之混合比例,並以L-lactide單體的ROP反應比較各錯合物的催化活性,發現含有醯胺基金屬錯合物LMeO-C-TolNa其效果最佳;僅需反應10秒,即能達到97%轉化率。最後,我們也藉由LMeO-C-TolNa之高活性,分別催化不同高極性起始物1,4-benzenedimethanol、ethylene glycol、(2-hydroxyethyl) ether、pentarythritol與L-lactide單體之共聚合反應(co-polymerization reaction),藉此,合成出新型的高分子材料。

並列摘要


1.A series of aluminum catalysts supported by various amide ligands was synthesized and applied in ring-opening polymerization of ε-caprolactone (CL). The results indicated all aluminum complexes exhibited catalytic activity in polymerization of ε-caprolactone. The catalytic activity of Al complexes was highly influenced by different amide ligands and the catalyst, LMeO-C-OMeAlMe2, showed highest catalytic activity in the ROP of CL (conv.= 90% in 1 h, kobs. = 4.23×10-2 min-1) using benzyl alcohol as initiator. Other cycloester monomers such as valerolactone and 2-bromo-ε-caprolactone were also be catalyzed effectively by LMeO-C-OMeAlMe2 to afford polyvalerolactone and poly-2-bromo-ε-caprolactone. In addition, various initiators with special target molecules such as N,N-dimethyl-ethanolamine, 2-((2-hydroxyethyl)disulfanyl)ethyl-2-bromo-2-methylpropanoate (HOSSBr), 6-hydroxyhexyl-2-bromo-2-methyl propanoate(HOCCBr), and PEG600 derivative (OHSSOH) bis(2-hydroxyethyl)disulfide, PEG200 were also successfully used in polymerization with CL by LMeO-C-OMeAlMe2. This study proved LMeO-C-OMeAlMe2 was the best choice of catalyst owning high catalytic activity toward ε-caprolactone polymerization. 2.Highly polar organic molecules, such as diols, were too protic to undergo ring-opening polymerization (ROP) with lactide (L-LA) homogenously. This study is the first breakthrough that diols can be co-polymerized with LA precursor effectively by using the sodium-typed amide catalysts, whichs are low Lewis acidic, combined with the THF/DMSO co-solvent method. A series of sodium catalysts supported by various amide ligands was synthesized and applied in ring-opening polymerization of L-LA. The results indicated all sodium complexes exhibited catalytic activity in polymerization of L-LA. The catalytic activity of Na complexes was highly influenced by different amide ligands and the catalyst, LMeO-C-TolNa, showed the highest catalytic activity in ROP of L-LA. In addition, various diols such as 1,4-benzenedimethanol, ethylene glycol, 2-hydroxyethylether, and pentarythritol were also successfully co-polymerized with LA by LMeO-C-TolNa. This study initiated the co-ROP of LA and diols under protic condition and LMeO-C-TolNa was the best catalyst due to its high catalytic activity and low toxicity suitable for medical polymer materials production.

並列關鍵字

Amides ε-Caprolactone L-LactideROP

參考文獻


10. Duda, A.; Florjanczyk, Z.; Hofman, A.; Slomkowski, S.; Penczek, S. Macromolecules, 1990, 23, 1640-1646
11. Kasperczyk, J. E., Macromolecules, 1995, 28, 3937-3939 12. Drouin, F.; Schaper, T. J. F., Dalton Trans., 2011, 40, 1396-1400 13. Hsiao, M. W.; Lin, C. C., Dalton Trans., 2013, 42, 2041-2051
14. Cui, C.; Zhao, J.; Song, H. Organometallics, 2007, 26, 1947-1954
15. Ziemkowska, W.; Kochanowski, J.; Cyran´ ski, M. K. J. Organomet. Chem., 2010, 695, 1205-1209
16. Arbaoui, A.; Redshaw, C.; Hughes, D. L., Chem. Commun., 2008, 4717-4719

延伸閱讀