透過您的圖書館登入
IP:18.191.202.72
  • 學位論文

應用金奈米粒子以時間延遲比色方法檢測水溶液中汞離子含量

Application of gold nanoparticles colorimetric method for the detection of mercury ion in aqueous solution

指導教授 : 黃俊嬴

摘要


由於汞離子(Hg2+)具有高毒性,不但會造成嚴重的環境汙染,同時也危害到人體的健康,所以現階段開發一種簡便並且快速檢測汞離子之感測方法已經越來越重要了。本論文開發出一個以不需經過表面修飾的金奈米粒子(gold nanoparticles , AuNPs)偵測汞離子的感測方法,主要的檢測原理是利用金奈粒子具有表面電漿共振(surface plasmon resonance,SPR)的特性,藉由觀察加入帶有S-H鍵的聚集劑之金膠體奈米粒子,其聚集速度與聚集程度和樣品中的汞離子濃度之間的關係,以達到感測之效果。而聚集速度或聚集程度,則可藉由測量金奈米粒子的表面電漿共振吸收峰所產生最強之消光波長的紅位移(red-shift)達成。藉由調整緩衝溶液、pH值和離子強度,可改變金奈米子表面靜電斥力,以達到最佳化的偵測效果。也因為半胱氨酸( L-cysteine )與汞離子具有高錯合物生成常數,使本研究所開發之檢測方法,對於汞離子具有很高專一性。實驗結果證明。半胱氨酸結合未經修飾金奈米粒子,其對於汞離子的偵測極限可達到~100 nM左右,並且具有非常快速、簡便且靈敏等特點。

並列摘要


Mercury (II) ion (Hg2+) not only has high toxicity but also causes serious pollution problems. Meanwhile, it also harms people’s health. Therefore, to develop an easy and quick way to detect Hg2+ has become important. This research aims to The main principle of this study is to use the gold nanoparticles’ surface plasmon resonance (SPR) effect. During the detection, the aggregation of AuNPs after the addition of aggregation agents is affected by the presence of Hg2+ and the degree of aggregation shows an inverse proportional to the concentration of Hg2+. Therefore, by observing the absorption maxima of SPR spectra, the concentration of Hg2+ can be predicted. By adjusting the concentration of acetate buffer, pH, anion concentration, the molar ratio between AuNPs and the aggregation agent, the sensing system is optimized. Since the high stability constant between L-cysteine and Hg2+, the proposed method shows high selectivity against Hg2+. As a result, we have developed a simple and fast approach for the detection of Hg2+ by using L-cysteine and unmodified gold nanoparticles. Under the optimal condition, the limit of the detection can be reached down to 100 nM.

參考文獻


[1] Hylander, L. D.; Meili, M., 500 years of mercury production: global annual inventory by region until 2000 and associated emissions. Science of The Total Environment 2003, 304 (1-3), 13-27.
[2] Che-Jen Lin1, S. O. P., The chemistry of atmospheric mercury: a review. Atmospheric Environment 1999, 33, 2067-2079.
[3] Morel FMM, K. A., Amyot M The chemical cycle and bioaccumulation of mercury. Annu Rev Ecol Syst 1998, 29, 543-566.
[4] Diez S., A. M., Bayona J.M., Organotin contamination in sediments from the Western Mediterranean enclosures following 10 years of TBT regulation. Water Research 2002, 36, 905–918.
[5] Linda M. Campbell, D. G. D., R. E. Hecky, A review of mercury in lake victoria, east africa: implications for human and ecosystem health. Taylor & Francis 2003, B, 6,325-356.

延伸閱讀