透過您的圖書館登入
IP:18.221.208.183
  • 學位論文

複合式組織異體移植之免疫調控的新思維:以人性化的大鼠複合式組織異體移植模型來探討利用小干擾核醣核酸負向調控Janus Kinase 3的表現運用在移植免疫耐受性的相關機轉

New Immunomodulation in Composite Tissue Allotransplantation: Downregulation of Janus Kinase 3 Expression by Small Interfering RNA in a Humanized Rat Model of Composite Tissue Allotransplantation

指導教授 : 賴春生

摘要


研究顯示,每年有上百萬病患需要大面積複合性組織來重建傷口,這個數字遠遠超過器官移植所能提供的數目;而且現今因燒傷、遺傳變異、以及腫瘤切除後所引發的大範圍組織缺陷,臨床上是從病患自體組織或是人造義肢來重建缺陷,但其結果往往不甚滿意,而且常常需要多次修整手術,以及長期復建計畫。近年來隨之興起的複合性組織異體移植(Composite Tissue Allotransplantation, CTA)正可以解決此一問題,其所包含的,包括由外胚層、中胚層及內胚層衍生而來的,有皮膚、脂肪、肌肉、神經、淋巴結、骨頭、骨髓等。但在臨床上,CTA最為人詬病的,是使用免疫抑制劑所帶來的毒性副作用。只要能夠安全地使用CTA的技術,就能夠使得CTA的運用從實驗室跨越到臨床領域(From Bench To Clinic),而成為重建外科醫師的利器;如此一來,就可以解決臨床上病友的需要。所以,如何將此副作用降到最低,吾人必須先瞭解到移植免疫機轉中,如何引發免疫耐受性的機轉作用,而試圖瞭解CTA與移植免疫耐受性之間的關係是有必要性的。 首先談到移植免疫耐受性,必須追溯到50年前Dr. Medawar與其同事在新生小鼠之間所做的移植免疫反應的研究。移植耐受性可以解釋成臨床上以及免疫上的耐受性;大體而言,耐受性的定義是宿主對供給者的抗原呈現不反應性,然而對第三者以外的抗原,則保有原本的抵抗免疫力。所以,在臨床上的移植耐受性,則指接受者在沒有長期免疫抑制劑的輔佐下,而移植物依然能夠存活;然而免疫上的移植耐受性,則指接受者在沒有長期免疫抑制劑的輔佐下,宿主體內並沒有可偵測到的任何對抗供給者的抗體。 目前從事複合性組織異體移植的實驗研究對象當中,最多的還是以大鼠為研究個體,而其模式則大多以標準後肢移植(Hind Limb Transplantation)為模式。因為標準的後肢移植物中,含有包括皮膚、脂肪、肌肉、神經、淋巴結、骨頭、骨髓等由外胚層、中胚層及內胚層衍生而來的多重組織,符合複合性組織異體移植的構成要素。但是以標準後肢移植模式作為複合性組織異體移植的模式而言,因為必須先將接受者老鼠的一後肢摘除,然後馬上再將捐贈者老鼠的後肢移植上去; 試想一下,有多少臨床的病患會在自己受到傷害造成肢體缺損的當時,馬上找到可以合適的捐贈者進行移植?姑且先不論這麼巧合的機率有多麼微乎其微,就技術面而言, 複合性組織異體移植手術本身對接受者而言,壓力就非常大;如手移植,手術時間長達十幾個小時,所以手術本身對接受者身體就有傷害了,對人的醫療照護已是如此,何況對於小小300公克的老鼠而言,更是一種大傷害。況且還同時截斷他一隻腿,再馬上移植一隻腿進去,這樣大的體能負擔,可想而知;也因此標準後肢移植接受者老鼠的死傷率比其他的器官移植接受者老鼠的存活率要高出許多。有鑒於傳統的大鼠複合式組織異體移植模型-異體後肢移植,對於實驗動物而言,不易存活,故吾人認為如何建立一個更安全的大鼠複合性組織異體移植移植模型,而能夠成功運用在動物實驗上是有其必要性的。所以本研究首要目的【第一目的】是建立一人性化的大鼠複合式組織異體移植模型來做為後續研究的標準平台。本實驗即針對建立一個新的、簡單、安全且可複製的動物實驗模型作探討。 實驗動物分為兩組,Isogeneic control group,Wistar→Wistar 以及Allogeneic experimental group, BN→Wistar。所有接受者老鼠均在術後第七天或者在移植物出現排斥反應Grade 3時,施予安樂死,並即時摘取移植物進行組織切片,步驟如下。『第一步驟:腹股溝大腿骨肌肉皮瓣移植的截取手術』-捐贈者老鼠先以腹腔注射Sodium pentobarbital麻醉,劑量65mg/kg。後將左後肢內、外側及下腹部剃毛,將動物固定在手術板上,利用小毯及電燈維持動物體溫。手術方式大致上採用大鼠之標準後肢移植(hind limb transplantation)的移植模式,但是加以改良。首先於後肢鼠蹊部作皮膚環切,之後將皮膚及脂肪沿著血管(superficial epigastric vessels)向腹股溝韌帶(inguinal ligament)處切開並鈍剝。由皮膚剝開面,小心沿著血管(superficial epigastric vessels)向下追蹤到股動、靜脈,而後一路往腹股溝韌帶(inguinal ligament)處剝除,過程中所遇到的血管及神經分支均需做適當處理(如結紮或燒灼後切斷),之後將股動脈、股靜脈及股神經小心剝離。此時,將股動脈、股靜脈下方的肌肉群(biceps femoris, quadriceps, gracilis, semitendinosus etc.)及坐骨神經(sciatic nerve)一一切斷,並在股骨頭上端三分之ㄧ處予以截斷,並將膝關節以下截肢;待一切處理好後,使移植物上僅剩完整的股動及靜脈與附著在血管上的骨肌肉皮瓣;此時後肢移植物之剝離已完成,移植物僅以股動、靜脈與大鼠連接,故先以無菌紗布沾濕後包被,等待接受者大鼠處理好後,即可截取移植物;截取時,於股動脈及股靜脈近端將其結紮,結紮點儘量靠近腹股溝韌帶。移植物取下後,組織捐贈者以過量之Sodium pentobarbital做腹腔注射,行安樂死。『第二步驟:移植手術』-接受者老鼠先以腹腔注射Sodium pentobarbital麻醉,劑量65mg/kg維持麻醉。大鼠於左後肢內側剃毛,經無菌處理後,延腹股溝往外腹側做三公分之皮膚切口,之後鈍剝皮膚,將整個內側肌肉均呈現出來。小心剝離腹股溝處之股動脈及股靜脈,於肢體端將其結紮,結紮點儘量靠近epigastric vessels 與saphenous vessels的分叉點,之後以血管夾夾住股動脈及靜脈後,剪斷血管,並立即將截取之移植物縫合固定在內側皮膚上,進行移植物與接受者血管的吻合。血管吻合後,小心修整移植組織,再縫合接受者與移植組織的皮膚。 經過不斷努力,本實驗室研發出腹股溝大腿骨肌肉皮瓣(Groin-Thigh Osteomyocutaneous Flap)可作為複合式組織異體移植的另一研究模型【第一目的】。 在動物實驗中異體肢體移植所引發的免疫變化尤其劇烈,原因不外乎因其源自於多重性高抗原性的組織所致。以往在臨床上運用在器官移植上的免疫抑制藥物的劑量,無法維持異體肢體移植的耐受性;然而將劑量提高來維持免疫的耐受性,雖然能夠避免移植物排斥;但隨之而來的,卻是令人憂心的隨機感染、藥物毒性、以及腫瘤的產生。目前臨床上常用在預防及治療器官排斥之免疫抑制劑,常因其作用標的物分佈廣泛而使其易有許多副作用,如產生腎毒性,神經毒性等。因此開發高專一性治療標的及低副作用之新免疫抑制藥物依然為各方致力之目標。Janus kinase 3 (JAK3),為Janus tyrosine kinase家族一員,其參與Interleukin (IL)-2,IL-4,IL-7,IL-9,IL-15及IL-21之訊息傳導,調節T細胞活化及增生。因此被視為開發免疫抑制藥物之理想標的。核醣核酸干擾技術RNA interference (RNAi),現已成為研究基因功能最具有威力之工具。目前許多研究也將RNAi用於治療病毒及腫瘤等方面,但在預防及治療移植排斥方面還尚未見到相關之研究。因此本研究的接續則運用RNAi技術阻斷JAK3表現作為預防及治療移植排斥之方法。本研究將利用載體選殖出適合之小干擾核醣核酸(short interfering RNA, siRNA)序列,先經由體外In Vitro細胞株(RBL-2H3 mast cell,富含high JAK3 expression)培養模式評估JAK3-RNAi作用濃度時間及抑制效果【第二目的】;再利用同種異體大鼠皮膚移植模式In Vivo評估JAK3-RNAi預防及治療移植排斥之效果,最後再經本實驗室已建立之大鼠腹股溝大腿骨肌肉皮瓣移植模型評估JAK3 RNAi作為預防及治療複合式移植之排斥藥物效用及安全性【第三目的】。 朝著針對CTA特有的移植耐受性去鑽研,或許如此一來,吾人可以發現前所未有、不同於以往的單一器官移植所需的移植耐受性機轉原理。其實不難想像,假使有一天某些誘導移植免疫耐受機轉的方法,能夠有效地排除了免疫抑制劑的不良副作用甚或不需要免疫抑制劑時,複合性組織異體移植或混合型成分組織移植將變得大量的需求。在研究上深入了解排斥反應的相關機轉以及研究新藥降低副作用,將可以提供一個解決的中庸之道,而終極目標,則是使CTA不只達到功能性的滿意,而且也提高生活的品質;相信這在不久的將來,一定是可以達到的理想。

並列摘要


A composite tissue transplant is a unique allograft consisting of a composite of distinct tissues, predominantly of integumentary/musculoskeletal types, which potentially would be used for functional and cosmetic restoration of patients with severe tissue loss. The first human hand transplant was performed in 1998 by a French team in Lyon. This procedure, as well as other composite tissue allotransplants, offers the potential for correcting untreatable large tissue defects. However, concerns remain regarding obligatory chronic immunosuppression and long-term functional results. First, this study focuses on development of a simpler and non-functional model that includes all the same tissue components as traditional hindlimb allotransplantation in rats (Aim 1). A groin-thigh osteomyocutaneous flap, composed of skin (groin), muscle (thigh), and bone (2/3 femur), based on the femoral vessels and superficial epigastric vessels, was developed for composite tissue allotransplantation. The total operative time was shortened compared with the standard and other modified models of rat hindlimb allotransplantation. Advantages of this new model include its simplicity, relative purity, and the more humanistic fact that it does not cause claudication to the animals as does standard orthotopic hindlimb transplantation, or extra-deformity to the recipients as does the heterotopic hindlimb model. Organ transplantation has become the standard treatment for a wide variety of diseases. However, there is a clear and significant need for a new generation of immunosuppressive agents that are effective yet lack the toxicity associated with current agents. This is also true for composite tissue allotransplantation. Recent attention has focused on interfering with a molecule called Janus kinase (JAK) 3, a protein tyrosine kinase, activated by cytokines that utilize the common interleukin (IL)-2 receptor γ-chain, such as IL-2, -4, -7, -9, -15, and -21. Therefore, inhibiting JAK3 appears to be a logical approach. Unlike other JAKs, which are widely expressed and bind several cytokine receptors, JAK3 has limited tissue distribution and seems to interact uniquely with one cytokine receptor subunit, which makes it a desirable therapeutic target. The receptor chain, which is designated the common γ-subunit (γc), is a common receptor subunit for six cytokines: interleukin-2 (IL-2), IL-4, IL-7, IL-9, IL-15 and IL-21. These cytokines all activate JAK3 because it selectively binds γc; this was an important observation that was pertinent to the development of a new immunosuppressant, because γc and its cognate cytokines are known to have a crucial role in lymphoid development and function. On the other hand, RNA interference (RNAi) has recently emerged as a specific and efficient method to silence gene expression in mammalian cells either by transfection of short interfering RNAs (siRNAs) from expression vectors. As reported, multiple lines of evidence indicate that RNAi seems to be a powerful tool for the fight against undesirable gene expression in human diseases. In our study, we intended to use the RNAi technique to block JAK3 expression and therefore to show that siRNAs are capable of specific, highly stable and functional silencing of gene expression of JAK 3 in vitro (Aim 2). Furthermore, we intended to prove allo-skin graft survival and apply this immune preconditioning to our groin-thigh flap allotransplantation in vivo (Aim 3). Our results show a significant, albeit moderate, immuno-suppressive effect of JAK3-silencing by siRNA in a more practical model of composite tissue allotransplantation. As this is only one possible mechanism to explain how JAK3 may be involved in tolerance induction, quantitative and promising results raise several questions and require further research that will clarify the dose-effect relationships, pathway characteristics, and the best way to administer the siRNA. Although ‘we are not there yet’, amazing improvements have been demonstrated towards JAK3 inhibition becoming part of the armamentarium used to prevent allo-organ rejection and future composite tissue allotransplantation.

參考文獻


1. Carrel, A., Landmark article, Nov 14, 1908: Results of the transplantation of blood vessels, organs and limbs. By Alexis Carrel. JAMA, 1983. 250(7): p. 944-53.
2. Carrel, A., The preservation of tissues and its applications in surgery. 1912. Clin Orthop Relat Res, 1992(278): p. 2-8.
3. Toledo-Pereyra, L.H., Classics of modern surgery: the unknown man of Alexis Carrel-- father of transplantation. J Invest Surg, 2003. 16(5): p. 243-6.
4. Gibson, T. and P.B. Medawar, The fate of skin homografts in man. J Anat, 1943. 77(Pt 4): p. 299-310 4.
5. Danovitch, G.M., Choice of immunosuppressive drugs and individualization of immunosuppressive therapy for kidney transplant patients. Transplant Proc, 1999. 31(8A): p. 2S-6S.

延伸閱讀