「亞健康」狀態是疾病與健康之間的灰色地帶,此狀態下並不會表現出明顯的症狀或是病徵。針對亞健康族群中具有高風險的三高族群,大多採用生理指數的監控來作為預防疾病惡化的手段。近年來由於穿戴式裝置及智慧型手機的蓬勃發展與普及化,皆可提供發展新型的遠距健康照護產品及其服務模式,然而其中所涉及的個人資料安全傳輸卻仍未受重視;此外,在一般傳輸架構下,若單一時間內執行上傳的終端設備過多,伺服器的負荷能力也將受到質疑。因此,本研究應用錯誤更正編解碼及分時多工方法於發展具強健性傳輸機制之生理參數監測系統,提供基礎生命徵象的安全與即時傳輸。 本研究的特定目標主要包含:1)實現錯誤更正編解碼機制於參數傳輸的容錯與修復,應用里德-所羅門編碼法(Reed-solomon codes、RS codes)來實作容錯傳輸機制,並將其導入至量測設備與終端設備間的數據傳輸,透過自行重新設計的生理量測數據封包及與其相對應的RS codes編碼法進行封包的編解碼,以此機制降低設備間數據封包的重傳率及錯誤率;2)基於分時多工架構進行伺服器流量調控,應用分時多工機制來實作壓力流量調控機制,在雲端平台與終端設備間建立一調控模組,透過該模組分配並指派各個終端設備的上傳設備,以避免雲端平台在同一時間內接受過多服務要求;3)整合上述,具體建立一多參數定點照護監測平台並透過實驗驗證其可行性。 本研究已具體實現一具強健性生命徵象傳輸機制之定點照護雛型系統;以RS codes編碼法實作容錯傳輸機制,在本研究所提之改良式2-byte封包傳輸架構下,實驗結果顯示可修正在公共頻段傳輸時所可能遭遇到的環境干擾;而運用所提之分時多工模式實作的壓力流量調控機制,在模擬1000台終端設備同時發送服務要求的情形下,實驗結果顯示其運作效能遠優於未導入前的一般網路使用情境。本論文所提出之方法與系統皆已呈現其可行性與實用性。
"Sub-healthy" status is a grey area between health and disease; there are no obvious symptoms or signs. In current clinical practice, monitoring vital signs is a typical approach to prevent disease progression for high-risk populations. With the global increasing trend and matured development of smart phones and wearable devices, new health care products and related services are going to appear in the market. However, secure transmission of personal data and excessive transmission load from terminal devices to server remain the crucial issues. In the thesis, error correction coding and time-division multiplexing methods are applied to develop a robust transmission system for the secure and real time transmission of vital signs. The specific aims of the study mainly include: 1) developing an error tolerant transmission mechanism based on Reed-Solomon codes (RS codes) to reduce the data packet re-transmission rate and the error rate between vital sign monitor and terminal device; 2) applying time-division multiplexing method to implement a network traffic regulation mechanism to improve excessive service requests into cloud platform at the same time. 3) After the integration of the above modules, a point of care monitoring system was established and verified through several experiments. This study has achieved a robust vital signs transmission system. The experimental results showed that the proposed 2-byte RS-coded transmission mechanism could effectively correct errors over a bursty channel, and the proposed traffic regulation mechanism outperforms general use scenarios without regulation under 1000 terminal devices simultaneously sending service requests. The results have shown feasibility and practicality of the proposed mechanisms and system.