透過您的圖書館登入
IP:18.191.108.168
  • 學位論文

全身震動訓練對人體的力學及生理的立即效應

The acute effect of whole body vibration training in human biomechanics and physiological factors

指導教授 : 林槐庭

摘要


前言:全身震動訓練現今普遍用於運動訓練與復健治療中,在震動訓練中,頻率和震幅的不同會影響到震動訓練強度,也可能會影響到震動的傳導或肌肉神經系統的負荷。過去文獻指出,全身震動訓練主要是刺激肌肉和肌腱內的感覺接受器,引起肌肉的牽張反射。大部分文獻指出震動訓練在立即與長期的效果,都可以達到肌力和爆發力提升,然而在本體感覺方面並沒有太多文獻去探討。過去文獻都使用不同的震動頻率進行訓練,也有些學者認為不適當的頻率可能造成傷害,如今卻沒有明確的頻率設定範圍。因此本實驗中使用兩個生理指標,去探討不同頻率震動訓練是否會造成組織發炎現象。在震動訓練對於心率變異的影響至今也還沒有文獻探討,因此本研究也會探討震動訓練對心跳率改變的影響,以了解接受震動訓練時交感與副交感神經調控的情形。人體各肢段或器官都有不同的共震頻率,當膝關節彎曲角度不同,可能會影響到震動傳導的效果。因此本實驗中將藉由加速度的層面,去探討五種不同膝關節角度下震動傳導的效果。 方法:本研究徵求13名大學男性,其平均年齡為21.31(±1.65)歲。在肌力方面會收集膝關節伸展與曲屈的力矩(N-m),而膝關節本體感覺則是使用等速肌力儀檢測其主動與被動的關節位置感覺,以探討震動訓練對於膝關節本體感覺之影響。發炎指標方面是經由唾液與血漿取得樣本,利用光譜分析去偵測其濃度差異。以上各項都是經由當天震動訓練之前與之後做兩次檢測,去比較前後測各項的差異。心率變異方面,會進行5分鐘安靜休息狀態、11分鐘震動訓練(震動一次一分鐘,每次休息一分鐘)和震動後休息狀態之心率變異。加速度探討時,使用2個三軸加速規,分別固定於大腿股四頭肌及小腿腓腸肌中間。讓受測者在不同關節角度下進行加速度的偵測。 結果:20 Hz及35Hz這兩組經過震動訓練後膝關節伸展肌力都有顯著性的下降(20Hz, p=0.0319;35Hz, p=0.0063),50 Hz則是沒有差異,在曲屈肌力則是在三個頻率震動下皆無顯著差異。膝關節本體感覺只有在35 Hz震動後的主動本體感覺有達顯著性提升(p=0.0074),其他頻率以及被動本體感覺則無顯著差異。在發炎指標方面TNF-α和PGE2前後測比較都沒有達到顯著性差異,但20 Hz震動訓練的 PGE2改變量明顯高於35 Hz (P=0.0250)。心率變異指標方面,震動訓練狀態下低頻比率 (LF%) 明顯低於安靜休息的狀態 (P=0.0014),而高頻比率 (HF%) 和低高頻比值方面則沒有顯著差異。心跳率(HR)和心跳間期的標準偏差 (SDNN) 相較於安靜休息狀態,在震動狀態下都有達到顯著性的提升(HR:P=0.0046; SDNN:P<0.001)。膝關節角度在完全伸展下(180度),加速度在大腿的垂直方向明顯的大於其他各角度。另外在大腿肢段的前後方向加速度比較,發現膝關節於180度時明顯小於膝關節100及120度時的加速度。小腿肢段的三個軸向加速度並不會隨著膝關節角度的改變而有所影響。 討論:震動訓練在20和35 Hz及震幅2mm,加上六分鐘的震動訓練下可能已經達到肌肉疲勞,而導致膝關節伸展肌力的下降。對於膝關節本體感覺方面,35 Hz的震動訓練可以立即的提升主動本體感覺,但是其機制還不明確。本研究中也發現,在20、35和50 Hz狀態下進行震動訓練,並不會達到肌肉組織的發炎現象,可以確定這些頻率範圍都是屬於安全的訓練範圍。心率變異上由於LF%和HF% 的表現可能不適用在運動狀態中,反而是心跳率和SDNN的顯著性上升,可以代表著震動訓練期間會造成交感神經的活化。加速度方面,在不同膝關節角度對於震動的傳導並沒有太大差異,反而是不同肢段對於加速度的影響較大。其他學者也支持肢段對加速度有明顯影響這個論點,所以膝關節的角度可能只影響到肌肉的活化程度或疲勞,並不會讓震動傳導有太大差異。加速度方面,可以看出不同膝關節角度對加速度的傳導效果會依軸向的不同而影響震動傳導的差異,膝關節趨近180°時垂直方向的加速度會逐漸變大,而前後方向則是變小的趨勢。

並列摘要


Introduction: Whole body vibration (WBV) has been used in exercise training and rehabilitation. The frequency and amplitude play the important roles in vibration training intensity, which determine the loading to the neuromuscular system and loading transmission in different segments when training. From the previous studies, the effect of WBV in neuromuscular system is through stimulates the receptors in muscles and tendons, and causes the muscle stretch reflex. The reflex can induce enhancements in muscle strength and power, both in acute and chronic WBV effect. However, the effect of WBV in knee joint proprioception is still unclear. Moreover, the safety training frequency in WBV is not indentified. Therefore, the purpose of this study was to investigate the acute effect of WBV in muscle strength and joint proprioception at different WBV frequency. Also, we used two inflammation factors as definition for muscle injury and inflammation during different frequency vibration training. In addition, the change of autonomic nervous system during WBV is still few studies to investigate. So, we also collected the heart rate variability (HRV) as an index to understand the relationship between vibration training and autonomic nervous system. Finally, we used the limb acceleration change to compare the vibration transmission under different knee flexion angles. Methods: Thirteen subjects with 18-25 years of age were participated in this study. All subjects had no lower extremity musculoskeletal injuries history at least one year. Dynamometer system (System 3, Biodex Medical Systems, New York, U.S.A.) was used for knee joint proprioception and maximal isometric strength of knee extensor and flexor test. Joint position sense (JPS) tested both in passive and active condition. Pre-vibration data were set as a baseline to compare the acute effect of 20, 35 and 50 Hz frequency and 2 mm amplitude WBV, 1 minute vibration with one minute rest for 6 cycles at knee flexion 100°. Before and after WBV training, the saliva and blood samples were collected to detect the inflammation factors of PGE2 and TNF-α, and using the enzyme-linked immunoassay (ELISA) to detect the concentration change in these samples. In the HRV test, we collected the electrocardiogram and use spectrum and frequency domain analysis to get the power of low frequency (LF%) and high frequency (HF%), LF/HF, heart rate (HR) and standard deviation of normal-to-normal intervals (SDNN). Acceleration was detected by 3-D accelerometer on thigh and shank under 5 different knee flexion angles (100°, 120°, 140°, 160°, 180°). Results: After 20 and 35 Hz WBV, the maximal isometric strength show significant decrease in knee extension (20Hz, p=0.0319;35Hz, p=0.0063) but had no change in flexion strength. Both knee extension and flexion torque were no significant change after WBV in 50 Hz. There was only a significant improvement in the active JPS (p=0.0074) after 35 Hz WBV. Compare to TNF-α and PGE2 concentration had no significant after WBV. But the PGE2 ratio of post-WBV and pre-WBV show a significant higher in 20 Hz compared to 35 Hz (P=0.0250). LF% had significant lower in WBV condition (P=0.0014). HF% and LF/HF showed higher tendency during WBV but not reach the statistic difference. HR and SDNN were get the significant increase in WBV condition (HR:P=0.0046; SDNN:P<0.001). Acceleration of vertical directions on thigh segment showed significant difference in knee angles 180° compared to 100°, 120°, 140°and 160°. In anterior and posterior direction of acceleration on thigh, 180° condition was smaller than 100° and 120° conditions. But no significant change was found in shank accelerations. Discussion & Conclusion: The present findings indicate that after 20 and 35 Hz whole body vibration, the knee extensor strength was decreased immediately. It may represent the quadriceps muscle was fatigue after 6 sets of WBV. And the 35 Hz vibration would improve the active JPS but the mechanics is still unknown. But we can sure that 20, 35 and 50 Hz WBV wouldn’t cause injuries and inflammation immediately. Some researchers indicated that LF and HF may be not suitable for exercise test, but we can find that both HR and SDNN increase indicated sympathetic nerve had more activity than parasympathetic nerve. In the transmission of vibration we found that the effect of different knee angles will resent on thigh segment but not in shank. With the decrease of knee flexion, the vertical acceleration will increase gradually. Oppositely, the thigh accelerations in anterior and posterior direction decrease with knee flexion decrease. But the accelerations in shank did not change with different knee angle. These findings can be a reference for clinical rehabilitation and sport training to find out the best policy for WBV training.

參考文獻


Bartels, M. N., S. Jelic, et al. (2004). "The effect of ventilation on spectral analysis of heart rate and blood pressure variability during exercise." Respir Physiol Neurobiol 144(1): 91-98.
Bilchick, K. C., B. Fetics, et al. (2002). "Prognostic value of heart rate variability in chronic congestive heart failure (Veterans Affairs' Survival Trial of Antiarrhythmic Therapy in Congestive Heart Failure)." Am J Cardiol 90(1): 24-28.
Blair Crewther, J. C., Justin Keogh ( 2004). "Gravitational forces and whole body vibration: implications for prescription of vibratory stimulation." Physical therapy in Sport Volume 5, Issue 1, Pages 37-43 (February 2004)(1): 37-43.
Bogaerts, A., S. Verschueren, et al. (2007). "Effects of whole body vibration training on postural control in older individuals: a 1 year randomized controlled trial." Gait Posture 26(2): 309-316.
Bosco, C., M. Cardinale, et al. (1998). "The influence of whole body vibration on jumping ability." Biol Sport 15: 157-164.

延伸閱讀