透過您的圖書館登入
IP:18.222.158.1
  • 學位論文

大氣禽流感病毒-候鳥棲息地與雲林熱區

Ambient concentration of avian influenza virus in habitats of migratory birds and hot zone

指導教授 : 陳培詩
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


研究背景:禽流感為人畜共通疾病,不僅造成人類及禽類健康影響,也造成經濟上的莫大損失。禽流感病毒跨國傳播途徑一般認為可能的傳播途徑有家禽或家禽製品的交易、野鳥的交易及候鳥遷徙等,且空氣傳播亦為重要的傳播途徑。而過去並沒有針對候鳥棲息地及雲林好發案例場周圍進行大氣禽流感之研究。 目的:監測及定量候鳥棲息地及雲林好發案例場周圍大氣禽流感病毒濃度的變化,並探討禽流感病毒與氣象因子與環境汙染物之間的相關性。 方法:樣本為使用Real-time qPCR定量分析大氣禽流感病毒濃度,鰲鼓溼地慘樣時間自2017年10月至2018年3月,而雲林熱區採樣期間自2017年11月至2018年2月,利用三層濾紙匣,裝載孔徑為1.0 μm且直徑為37mm之鐵氟龍濾紙,以20 L/min 之流量進行採樣,而所有環境資料則取自環保署空氣觀測站之資料庫。 研究結果: 陽性率的部分,鰲鼓溼地A型流感、H5、H7、H9亞型禽流感病毒陽性率分別為40.7%、35.1%、35.1%、38.9%;而在雲林熱區A型流感、H5、H7、H9亞型禽流感病毒陽性率分別為67.4%、37.2%、60.5%、55.8%。最高濃度的部分,鰲鼓溼地A型流感病毒、H5、H7、H9亞型禽流感病毒偵測到最高濃度分別為6.5×103 copies/m3、1.3×102 copies/m3、 3.8×102 copies/m3、 2.1×102 copies/m3;而在雲林熱區A型流感病毒、H5、H7、H9亞型禽流感病毒偵測到最高濃度分別為2.9×103 copies/m3、 1.3×104 copies/m3、 1.1×103 copies/m3、 5.3×102 copies/m3。相關性檢定的部分,鰲鼓溼地呈現負相關性變項分別為最大溫度、最小溫度、最小相對濕度、平均相對濕度、降雨量、O3,正相關性變項分別為NO、NO2、NOx、SO2;雲林熱區與鰲鼓溼地趨勢相反,負相關性變項分別為CO、NO2、NOx、SO2,正相關性變項分別為最大溫度、最小溫度、平均溫度、最小相對濕度、平均相對濕度、PM10。 結論:本研究為世界上首次於候鳥棲息地及流行熱區偵測到大氣禽流感病毒濃度,且氣象因子 (如:最大溫度、最小溫度、最小相對濕度、平均相對濕度)及環境汙染物 (NOx、SO2)皆與大氣禽流感病毒濃度具顯著性相關。

並列摘要


Background: Avian influenza is an zoonotic pathogen. It not only causes human and poultry health effects, but also causes economic losses. The transnational transmission of avian influenza viruses is generally considered to be possible through the transmission of poultry or poultry products, the trading of wild birds and migratory birds and migration, etc., and air transmission is also an important route of spreading avian influenza virus. However, no study investigates ambient concentration of avian influenza virus in habitats of migratory birds and the area where Yunlin avian influenza often occurs. Aim: Monitor and quantify ambient concentration of avian influenza virus around migratory bird habitats and the area where Yunlin avian influenza often occurs. Furthermore, the relationship between anian influenza virus and environmental factors also assessed. Methods: The samples were analyzed by real-time qPCR for quantitative analysis of ambient avian influenza virus concentration. The period of Aogu wetland was from October 2017 to March 2018, while the period of Yunlin hot zone was from November 2017 to February 2018. Each air samples was collected by 37 mm polypropylene filter cassette with a Teflon filter paper (pore size of 1.0 μm) at 20 L/min for 24 hours, and environmental data were provided by Taiwan Environmental Protection Administration. Results: The positive rates of Influenza A, H5, H7, H9 subtype avian influenza viruses were 40.7%, 35.1%, 35.1%, 38.9%, respectively, while in the Yunlin Hot spot The positive rates of influenza A, H5, H7, and H9 subtype avian influenza viruses were 67.4%, 37.2%, 60.5%, and 55.8%, respectively. The highest concentration of the influenza A virus, H5, H7, H9 subtype avian influenza virus detected the highest concentration of 6.5 × 103 copies / m3, 1.3 × 102 copies / m3, 3.8 × 102 copies / m3, 2.1 × 102 copies / m3; and the highest concentrations detected in the Yunlin hot area influenza A virus, H5, H7, H9 subtype avian influenza virus were 2.9 × 103 copies / m3, 1.3 × 104 copies / m3 , 1.1 × 103 copies / m3, 5.3 × 102 copies / m3. For correlation test, the negative correlation variables of Aogu wetland are maximum temperature, minimum temperature, minimum relative humidity, average relative humidity, rainfall, O3,and positive correlation variables are NO, NO2, NOx, SO2. The trend of correlation test, Yunlin hot zone is opposite to Aogu wetland, the negative correlation variables are CO, NO2, NOx, SO2. The positive correlation variables are the maximum temperature minimum temperature, the average temperature, and the minimum humidity, average humidity, PM10. Conclusion: This is the first study in the world to monitor and quantify ambient avian influenza virus in migratory bird habitats and hot spots. We also find that ambient avian influenza virus are significantly associated with meteorological factors (such as maximum temperature, minimum temperature, minimum relative humidity, average relative humidity) and air pollutants (NOx, SO2).

參考文獻


1. Anderson et al. (2018). “Prospective surveillance for influenza A virus in Chinese swine farms.” Emerg Microbes Infect. 2018 May 16;7(1):87.
2. Burns, T. E., et al. (2012). "Use of observed wild bird activity on poultry farms and a literature review to target species as high priority for avian influenza testing in 2 regions of Canada." Can Vet J 53(2): 158-166.
3. Caron, A., et al. (2011). "Persistence of low pathogenic avian influenza virus in waterfowl in a Southern African ecosystem." Ecohealth 8(1): 109-115.
4. Chakraborty, A., et al. (2017). "Mild Respiratory Illness Among Young Children Caused by Highly Pathogenic Avian Influenza A (H5N1) Virus Infection in Dhaka, Bangladesh, 2011." J Infect Dis 216(suppl_4): S520-s528.
5. Chen, H., et al. (2005). "Avian flu: H5N1 virus outbreak in migratory waterfowl." Nature 436(7048): 191-192.

延伸閱讀