透過您的圖書館登入
IP:3.142.197.212
  • 學位論文

工業區空氣中金屬污染物分佈調查與風險評估研究

Distribution Investigation and Risk Assessment of Metal Pollutants in Ambient Air around Industrial Parks

指導教授 : 凌永健
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


台灣地區地狹人稠,環境負荷沈重,為追求經濟發展,大量增設工業區,然常因空間規劃和使用不夠完善,造成住宅區與工業區相鄰或重疊之問題。工業區廠商通常使用到大量毒性金屬污染物,一旦操作和管制不當,會對生物體造成毒害。毒性金屬污染物具有生物難分解性及累積性,對環境之衝擊遠比其它毒物嚴重,更具危機潛勢,以固態或氣態之型態,透過空氣之媒介進行傳輸,極有可能直接對工業區周圍民眾及工業區內作業人員,造成健康上之危害。 本研究以國內第一工業大縣-桃園縣,以及半導體及光電產業密集之新竹科學工業園區,為調查目標區域。使用環保署標準方法「空氣中粒狀污染物檢測法-高量採樣法」及「排放管道中重金屬檢測方法」中之濾紙消化及分析方法,及對金屬元素具有高靈敏度之感應耦合電漿質譜儀做為測定儀器。研究標的物為工業區工廠製程中可能使用及法規管制之金屬污染物(砷、鈹、鎘、鉻、銅、汞、錳、鎳、鉛、鎢、鎵及銦)。以主成分及階層分析測得之金屬污染物數據,以了解工業區空氣中金屬汙染物分佈及可疑來源。參考美國環境健康危害評估辦公室毒理資料庫之致癌斜率係數,計算工業區空氣中金屬污染物對民眾貢獻之終身致癌風險。 本論文共分為五章,第一章闡述研究動機與論文研究方法及架構,第五章為結論與展望,其他三章結論摘錄如下。第二章為「新竹科學工業園區汙泥乾燥焚化設施啟用前後對空氣中金屬污染物分佈影響研究」,調查結果顯示焚化設施啟用後,周圍環境空氣中金屬污染物明顯增加,特別是懸浮微粒中金屬污染物增加數倍之多。初步認定鎢及汞與焚化設施有相當之關係,且為科學園區空氣中特有之金屬污染物組成。 第三章為「桃園縣工業區空氣中金屬污染物分佈調查與風險評估研究」,調查結果顯示桃園縣空氣中金屬污染物濃度皆符合法規,如與法規進行比較,適當之致癌風險目標可定為十萬分之一(10-5)。如以10-5之致癌風險為環境基本目標,有致癌風險金屬污染物之法規濃度可訂定如下:砷為0.005 μg/Nm3,鈹為0.005 μg/Nm3,鎘為0.005 μg/Nm3,鎳為0.05 μg/Nm3,鉛為1 μg/Nm3,六價鉻為0.0001 μg/Nm3。其他無致癌風險之污染物,建議改為原來國內法規之1/10至1/100,以達環境之安全需求。 第四章為「新竹科學工業園區空氣中金屬污染物分佈調查與風險評估研究」,調查結果顯示科學園區各區域居民致癌風險分佈為5.5 × 10-4至6.8 × 10-4,平均為6.3 × 10-4,主要是六價鉻(以總鉻25 %進行推估)貢獻主要致癌風險。扣除鉻之致癌風險,分佈為1.3 × 10-5至3.4 × 10-5,平均為2.1 × 10-5,主要由砷及鎘貢獻較多之致癌風險。

並列摘要


Heavy environmental burden in Taiwan is partly due to its limited accessible land and high density population. To pursue economic development, numerous industrial parks were established. Residential area sometimes overlaps with industrial area as a result of improper space planning and utilization. Use of large amounts of toxic metals by the factories will jeopardize the neighboring residents should improper operation and control occur resulting in emission of toxic metal pollutants (TMPs). TMPs are prone to accumulative in and difficult to be degraded by living beings. Compared to other toxic pollutants, TMPs have greater impact to the environment and possess potential crisis. TMPs might transmit via the air in solid or/and gaseous form and directly threat the health of neighboring residents and workers in the park. TaoYuan County (TYC) and the Hsinchu Science-based Industrial Park (HSIP) are the two investigating area in this thesis. We use standard methods from Taiwan EPA for heavy metal sampling and analyses, i.e. with an inductively coupled plasma mass spectrometer for sensitive determination of trace analytes (As, Be, Cd, Cr, Cu, Hg, Mn, Ni, Pb, W, Ga, and In). Furthermore, we use statistical methods of factor analysis and cluster analysis to examine the measured data, aiming to understand the distribution of TMPs in ambient air around industrial parks and to reveal suspected sources. We use cancer slop factor from the Toxicity Criteria Database of the American Environmental Health Hazard Assessment to estimate the perpetual cancer risk from ambient TMPS to neighboring residents. The thesis contains five chapters. Chapter 1 describes the motive behind this research and the methods used. Chapter 2 is entitled “The impact to the distribution of heavy metals in ambient air at HSIP after the operation of a sludge-drying incinerator”. We found elevated levels of tungsten and mercury in ambient air when the sludge-drying incinerator was in operation. Chapter 3 is entitled “Distribution investigation and risk assessment of TMPs in ambient air around TYC industrial parks”. The regulated TMPs like Pb and Cd are compliant with Taiwan air quality regulations. Setting 10-5 as the targeted cancer risk, we recommend the air quality standard as following: 0.005 μg/Nm3 for As, 0.005 μg/Nm3 for Be, 0.005 μg/Nm3 for Cd, 0.05 μg/Nm3 for Ni, 1 μg/Nm3 for Pb, 0.0001 μg/Nm3 for Cr+6. The recommended values are from 1/10 to 1/100 of the current values. Chapter 4 is entitled “Distribution investigation and risk assessment of TMPs in ambient air around HSIPs”. The cancer risk from TMPs in ambient air to neighboring residents ranges from 5.5×10-4 to 6.8×10-4 with a mean value of 6.3×10-4. Cr+6 is the dominated contributing TMP. Excluding Cr+6, the cancer risk ranges from 1.3×10-5 to 3.4×10-5 with a mean value of 2.1×10-5. Chapter 5 summarizes the conclusions and perspectives for future.

參考文獻


[2-1] 新竹科學工業園區基地範圍簡介,
[2-2] 新竹科學工業園區污水處理廠介紹,
[1-1] Caussy, D., Gochfeld, M., Gurzau, E., Neagu, C., Ruedele, H., Lessons from case studies of metals: investigating exposure, bioavailability, and risk, 2003, Ecotoxicology and Environmental Safety, 56, 45-51.
[1-2] Vahter, M., Akesson, A., Liden, C., Ceccatelli, S., Berglunda, M., Gender differences in the disposition and toxicity of metals, 2007, Environmental Research, 104, 85-95.
[1-3] Goldhaber, S.B., Trace element risk assessment: essentiality vs. toxicity, Regulatory Toxicology and Pharmacology, 2003, 38, 232-242.

延伸閱讀