透過您的圖書館登入
IP:216.73.216.250
  • 學位論文

某些t-模之半週期的超越性

Transcendence of quasi-periods for certain t-modules

指導教授 : 張介玉

摘要


在 [C13] 這篇論文當中, 考慮秩為 2 的 Drinfeld 模基於 Carlitz 模擴張的 t 模, Chang 引進了秩為 2 的 Drinfeld 模的第三類週期為此 t 模週期的第二個座標. 在此篇論文中, 我們具體導出了此 t 模的準週期為 Carlitz 模的基本週期, 以及 此 Drinfeld 模的週期, 準週期, 對數, 準對數的代數組合. 接著, 我們利用了 Drinfeld 模的 Legendre 關係以及 Chang-Papanikolas 在 Drinfeld 模週期的 代數獨立性, 我們證明了此 t 模的準週期非零情況下的超越性.

關鍵字

t-模 Drinfeld 模 半週期函數

並列摘要


In [C13], Chang introduced periods of the third kind of a rank 2 Drinfeld module as the second coordinate of periods of at-module which is formed by the extension of the Drinfeld module by the Carlitz module. In this thesis, we find the quasi-periods of the t-module explicitly as algebraic combinations of the fundamental period of the Carlitz module, and periods, quasi-periods, logarithms, and quasi-logarithms of the Drinfeld module. Then, using the Legendrerelation for Drinfeld modules and an algebraic independence result of Chang and Papanikolas, we prove the transcendence of quasi-periods of this t-module whenever it is nonzero.

參考文獻


[A86] Anderson. G. W. , t-motives, Duke Math. J. 53, 457{502 (1986)
[BP02] Brownawell, W.D., Papanikolas, M.A. Linear independence of Gamma values in positive characteristic. J. Reine Angew. Math. 549, 91{148 (2002)
[C13] Chang, C.-Y. On periods of the third kind for rank 2 Drinfeld module. Math. Z. 273, 921{933 (2013)
[CP12] Chang, C.-Y., Papanikolas, M.A. Algebraic independence of periods and logarithms of Drinfeld modules. With an appendix by Brian Conrad. J. Am. Math. Soc. 25, 123{150 (2012)
[Dr74] Drinfeld, V.G.: Elliptic modules. Math. USSR-Sb. 23, 561{592 (1974)

延伸閱讀