透過您的圖書館登入
IP:3.141.202.187
  • 學位論文

多面體寡聚倍半矽氧烷改質環氧樹脂奈米複合材料之製備及性質研究

Preparation and Characterization of Polyhedral Oligomeric Silsesquioxanes/Epoxy Nanocomposites

指導教授 : 馬振基
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


本研究旨在利用籠狀(cage)聚倍半矽氧烷(IPI-POSS)與環氧樹脂進行反應,形成環氧樹脂側鏈帶有矽氧烷的前驅物,將此前驅物以不同添加比例加入環氧樹脂(DGEBA type epoxy resin),以DDM當硬化劑,製備籠狀聚倍半矽氧烷環氧樹脂奈米無機有機複合材料,以期導入少量的矽氧烷能改善環氧樹脂之熱安定性及難燃性。 本研究利用FT-IR鑑定出前驅物及奈米複合材料之結構。由Solid-state 29Si NMR監測反應後的籠狀矽氧烷結構的完整性。在反應動力學方面,發現導入矽氧烷對環氧樹脂反應活化能不致於有大幅度的增加(介於55 kJ/mol~63kJ/mol),顯示出IPEP之導入不會影響反應進行。 在型態學方面,利用SEM所觀察到矽氧烷與環氧樹脂相容性相當好,無相分離現象。由TEM可知矽氧烷均勻分佈於環氧樹脂中,而矽氧烷顆粒大小約為2~5 nm,為奈米等級分散。以AFM測表面特性得知奈米複合材料的表面粗糙高低落差約20 nm,顯示表面平整性優異。由XRD鑑定得知分子鏈結構型態為非結晶型高分子化合物。 經由DSC、TGA的測試分析可知奈米複合材料在熱性質方面有明顯的改善,玻璃轉移溫度由118 ℃提升至172 ℃、焦炭率由14.39 %提升至21.41 %、IPDT值由604 oC提升至778 oC,裂解活化能也隨矽氧烷含量增加而提升,表現優異的熱穩定性。另外,在難燃性質方面,由LOI的測試中發現奈米複合材料難燃性質優異,其LOI值為28,已達到難燃材料標準。 在機械性質方面,由DMA測試結果得知導入矽氧烷可有效的提昇材料的儲存模數,其儲存模數由41.17 MPa提升至88.84 MPA。由Shore-D的硬度測定,奈米複合材料的硬度由34.4提升至43.5。由整體研究結果可知添加50 wt% IPEP的環氧樹脂奈米複合材料具有較佳的性能。

並列摘要


In this study, the cage polysilsesquioxane, Isocyanatopropyldimethyl- silyl-Isobutyl-POSS (IPI-POSS) was reacted with epoxy resin to form silicon containing modified epoxy (IPEP). Furthermore, various contents of IPEP were added to DGEBA epoxy resin to fabricate epoxy nanocomposites. It is anticipated that the nanocomposites prepared will exhibit excellent thermal stability and flame retardance. FTIR, ATR and 29Si Solid-state NMR were used to characterize the reactivity and the structure of IPEP and nanocomposites. SEM, TEM, AFM and XRD were used to study the morphology of the nanocomposites. DSC, TGA, DMA, LOI were utilized to analyze thermal property of nanocomposites. Moreover, the kinetics of curing and thermal degradation were studied by Ozawa and Kissinger method. The XRD patterns show that all nanocomposites were amorphous.The SEM microphotographs indicated that the nanocomposites possess good compatibility and no aggregation was observed. The TEM microphotographs showed that the POSS particle was about 2~5 nm. The AFM microphotographs exhibited that the surface of the nanocomposite was smooth. Incorporation of IPEP into epoxy resin can enhance the thermal stability of the nanocomposites. The glass transition temperature of the nanocomposite material increased from 118oC to 172oC, char yield increased from 14.39 % to 21.41 %, IPDT increased from 604oC to 778oC. Furthermore, the nanocomposites also possess excellent flame retardance (LOI 28), low rate of degradation and high activation energy of degradation. The activation energy of degradation increased with the increasing of IPEP content. The storage moduli and hardness of nanocomposites also increased with the increasing of IPEP content. The storage moduli of nanocomposites were increased from 41.17 MPa to 88.84 MPa. The hardness of nanocomposites was increased from 34.4 to 43.5.

並列關鍵字

POSS Epoxy

參考文獻


3. R. C. Mehrotra, “Synthesis and Reaction of Metal Alkoxides", Journal of Non-Crystalline Solids, l00, p.1-15, 1988.
8. C. C. Riccardi, and R. J. J. Williams, Journal of Applied Polymer Science, 32, 3445, 1986
12. C. S. Wang, J. Y. Shieh, “Phosphorus-Containing Epoxy Resin for an Electronic Application”, Journal of Applied Polymer Science, 73, 353-361, 1999
13. C. S. Wang, C. H. Lin, “Synthesis and Properties of Phosphorus Containing Advanced Epoxy Resins”, Journal of Applied Polymer Science, 75, 429, 2000
14. J. L. Hedrick, B. Haidar, T. P. Russell and D. C. Hafer, “ Synthesis and Properties of Segmented and Block Poly (Hydroxy - Ether - Siloxane) Copolymers ”, Macromolecules, 21, 1967, 1988

被引用紀錄


連思瑀(2017)。雙硬化型環氧甲基丙烯酸酯複合材料之製備與抗腐蝕性質測試〔碩士論文,淡江大學〕。華藝線上圖書館。https://doi.org/10.6846/TKU.2017.00266
江家豪(2015)。石墨烯補強共聚物高分子不連續碳纖維複合材料之機械性質與破壞行為研究〔碩士論文,國立清華大學〕。華藝線上圖書館。https://doi.org/10.6843/NTHU.2015.00035
楊士億(2009)。奈米無機物包覆碳奈米管/環氧樹脂複合材料之製備及其性質之研究〔碩士論文,國立清華大學〕。華藝線上圖書館。https://www.airitilibrary.com/Article/Detail?DocID=U0016-1111200916004353
林瑋寧(2010)。碳奈米管/奈米石墨烯片/環氧樹脂複合材料之製備及其性質之研究〔碩士論文,國立清華大學〕。華藝線上圖書館。https://www.airitilibrary.com/Article/Detail?DocID=U0016-0211201015591242

延伸閱讀