透過您的圖書館登入
IP:18.190.152.38
  • 學位論文

三族氮化物薄膜之磊晶成長與物性分析

Epitaxial Growth and Fundamental Properties of III-Nitride Semiconductors

指導教授 : 果尚志

摘要


三族氮化物薄膜之磊晶成長與物性分析 摘要 三族氮化物材料如氮化鋁(AlN),氮化鎵(GaN)與氮化銦(InN)為一個在光電應用上極具發展性的寬能隙半導體材料系統。三族氮化物材料為烏采結構(Wurtzite structure),在c軸方向不具中心對稱性,此外陰離子與陽離子之間陰電性差異很大,具有很強的離子鍵特性,因此整個晶體在巨觀上c軸方向會存在著一個電偶極矩,其可以分為自發極化效應與壓電極化效應。 在第一章,先簡介三族氮化物材料的晶體特性與極化效應,然後在第二章會介紹所使用的儀器與實驗方法,在第三章,利用電漿輔助式分子束磊晶系統成長所需要研究的材料結構後,使用X光繞射、Raman光譜確定結構與晶體品質,之後使用光電子能譜術分析三族氮化物異質接面的電子結構,並分析極化效應的影響,此外也利用掃描式光電子能譜顯微儀(scanning photoelectron microscopy),做即場(in situ)的三族氮化物截面電子結構分析。氮化銦由於具有很大的表面能帶彎曲(surface band bending),其表面電荷堆積現象對氮化銦材料有很大的影響,為了避免表面汙染物的影響,在第四章中,我們成長氮化銦薄膜並做即場的光電子能譜術分析其電子結構。最後,氮化矽(-Si3N4)是一個很優異的介電質材料,並可以用來當作緩衝層在矽基板上成長三族氮化物薄膜,因此相同的技術也運用來研究氮化矽材料,

並列摘要


Epitaxial Growth and Fundamental Properties of III-Nitride Semiconductors Abstract The III-nitrides semiconductors AlN, GaN, and InN are promising wide-band-gap semiconductors for optoelectronic applications. Large bond ionicity and crystalline asymmetry in z-axis produce macroscopic polarizations in wurtzite-type III-nitrides and therefore strong piezoelectric and spontaneous polarization strongly affect the III-nitrides thin films and polar III-nitride heterointerfaces. In chapter 1, we will introduce the crystal properties and polarization effects in III-nitrides semiconductors. Next, experimental methods used in this thesis will be briefly discussed in chapter 2. The design and growth of high quality III-Nitrides structures for the propose of study their crystal properties, polarization effects and electronic structures are described in chapter 3. Because unwanted surface contaminations may influence the intrinsic properties, we performed in situ SR-PES measurements on InN. The electronic structures of contamination-free InN surface is discussed in chapter 4. The integration of the unique properties of III-nitrides semiconductors with the mature silicon technology is very attractive and the high quality III-nitrides epilayers can be grown on silicon substrate by utilizing a Si3N4 buffer layer. Therefore, the growth of Si3N4 on Si substrate by nitrogen plasma source and its valence band offset and interface stoichiometry will be studied in Chapter 5.

參考文獻


Chapter 1
[1-10]. F. Bernardini, and V. Fiorentini, Appl. Phys. Lett. 80, 4145 (2002).
[3-5]. K. Xu and A. Yoshikawa, Appl. Phys. Lett. 83, 251 (2003).
[3-6]. S. S. Gwo, C.-L. Wu, C.-H. Shen, W.-H. Chang, T. M. Hsu, J.-S. Wang, and J.-T. Hsu Gwo, C. L. Wu, C. H. Shen, , Appl. Physi. Lett. 84, 3765 (2004).
[3-8]. S. Gwo, C.-L. Wu, C.-H. Shen, W.-H. Chang, T. M. Hsu, J.-S. Wang, and J.-T. Hsu, Appl. Phys. Lett. 84, 3765 (2004).

被引用紀錄


楊仲培(2014)。以電漿輔助式分子束磊晶成長氮化鎵奈米柱及其在光伏上的應用〔碩士論文,國立交通大學〕。華藝線上圖書館。https://doi.org/10.6842/NCTU.2014.00849

延伸閱讀