透過您的圖書館登入
IP:18.191.171.235
  • 學位論文

以酵素工程法開發黏質沙雷氏菌BCRC10948之新型具有高催化效率短鏈脫氫酶還原酶

Engineer a novel short-chain dehydrogenase/reductase that exhibits enhanced catalytic efficiency and exquisite substrate specificity from Serratia marcescens BCRC 10948

指導教授 : 王雯靜
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


(R)-Phenylephrine [(R)-PE] 是一種α1腎上腺素受體興奮劑,相較於其他類腎上腺素藥物其副作用較低,目前被廣泛用於舒緩鼻充血和延長麻醉時效。利用化學合成方式生產(R)-PE時,非藥用(S)-PE幾乎占整體產量的一半,且生產過程需用到觸媒並在高溫高壓下進行,不僅成本高且對環境不友善。近期中興大學許文輝教授及楊明德教授實驗室從Serratia marcescens BCRC 109485中分離出一株具有可以將1-(3-hydroxyphenyl)-2-(methylamino) ethanone (HPMAE) 轉換成(R)-PE的short-chain dehydrogenase/reductase (SDR),稱之為SmSDR。從SmSDR的轉換結果中發現鏡像異構物選擇性[(R)-PE)]高達99%,但整體產率及轉換率不佳,無法達到工業化應用的標準。此篇研究即是與中興大學合作,希望利用晶體繞射學技術解出SmSDR的蛋白質結構,之後再更進一步分析其結構特性、催化機制以及反應物專一性,並依據這些資訊來設計定點突變,即是利用蛋白質工程的方式改良SmSDR的催化效率使之有潛力應用在藥物生產工業上。首先我們成功的培養出SmSDR晶體並解出具有1.47Å高解析度的蛋白質結構,接著用電腦模擬的方式建立出蛋白質與反應物的作用關係,依據這些資訊來設計突變點,最後得到具有不改變鏡像選擇性且酵素活性提高的雙點突變株SmSDR-F98YF202L,且在生物轉化過程中提高了(R)-PE)的轉換率,證明了有效的突變位點的確可以使SmSDR的催化效力增加,而我們的最終目標為將SmSDR之產率及轉換率改良到足以應用在工業化生產製程上。

並列摘要


(R)-Phenylephrine [(R)-PE] is an α1-adrenergic receptor agonist widely used as a nasal decongestant and a cardiac agent without major side effects opposing to other adrenergic drugs such as ephedrine. In addition, the current mass-production procedure usually consists of (S) chiral form (50%). In an end to increase the specificity, a bio-catalytic transformation procedure using a novel short-chain dehydrogenase/reductase (SDR) from Serratia marcescens BCRC 10948 (Peng, G. J. et al.) to convert 1-(3-hydroxyphenyl)-2-(methylamino) ethanone (HPMAE) into an enantioseletive (R)-PE (more than 99%) has been attempted. However, this method performs relatively low conversion yield and productivity. In this study, we aim to determine the crystallographic structure of SmSDR as a structural basis to engineer high-activity SmSDR variants. Here, we report the 1.47 Å atomic-resolution apo-form structure. A liganded complex was built using Discovery Studio. Several mutants were predicted and characterized based on a structure-guided approach. A double mutant SmSDR-F98YF202L was found to display the highest activity. Furthermore, this mutant demonstrated a much higher conversion yield and productivity in the whole-cell assay, suggesting a valuable engineered variant for pharmaceutical applications.

參考文獻


1. Hutt, A.J. and S.C. Tan, Drug chirality and its clinical significance. Drugs, 1996. 52 Suppl 5: p. 1-12.
3. Kumar, P., Naidu, V., Gupta, P., Application of hydrolytic kinetic resolution (HKR) in the synthesis of bioactive compounds. Tetrahedron, 2007. 63(13): p. 2745-2785.
4. Pandey, R.K., Upadhyay, P.K., Kumar, P., Enantioselective synthesis of (R)-phenylephrine hydrochloride. Tetrahedron Letters, 2003. 44: p. 6245-6246.
5. Wohlgemuth, R., Biocatalysis--key to sustainable industrial chemistry. Curr Opin Biotechnol, 2010. 21(6): p. 713-24.
6. Nestl, B.M., B.A. Nebel, and B. Hauer, Recent progress in industrial biocatalysis. Curr Opin Chem Biol, 2011. 15(2): p. 187-93.

延伸閱讀