透過您的圖書館登入
IP:18.219.179.65
  • 學位論文

合成石墨化奈米碳纖維及三維石墨烯複合結構應用於超級電容之研究

The synthesis of graphitic nanofibers/three dimensional graphene as a hybrid nanostructure for supercapacitors

指導教授 : 蔡春鴻 葉宗洸
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


近幾十年來,劇烈的氣候變化及有限的化石燃料儲量,使得再生能源以及儲能系統受到很大的關注。再生能源如:風能和太陽能,是地球上相較之下較容易獲得的能源,但由於其間歇性的緣故,使如何更有效率的儲存能量變得更為重要。而在眾多的儲能元件中,超級電容具有高功率密度、快速充放電的能力、高循環壽命等之優點,無論在混合動力汽車、電動車、通訊、記憶體等方面皆有很大的應用價值及潛力。本研究是利用熱化學氣相沉積法在高多孔性之泡沫鎳基板上合成石墨化奈米碳纖維及三維石墨烯之複合結構,並將其應用於超級電容之電極上。本研究之複合結構具有高孔隙及高比表面積,以6 M KOH做為電解液進行電化學量測,在電流密度1 A g-1 下可以得到優異之電容值達59.28 F g-1,藉由長效性的充放電測試,經過了1000個循環,電容值仍然可以維持於90.66 %,表示了此材料優異的長效循環壽命。這些結果顯示了此石墨化奈米碳纖維及三維石墨烯之複合結構具有極佳之潛力成為超級電容之電極,對於儲能元件上之應用有極大的幫助。

並列摘要


In recent decades, the climate change and the limited reserves of fossil fuels, and energy security concerns, have promoted internationally interest in developing renewable energy technologies from renewable and endurable energy resources. In fact, there is a speedy increase in renewable energy productions from wind and solar energy, the most bountiful and easily available resources. Given the intermittent nature of solar and wind energy, efficient energy storage systems are urgently required to make the best of the electricity generated from these sources since they can boost the effective and reliability use of the entire power system by storing energy when in excess while releasing it when in high demand. For this purpose, supercapacitors have been promising candidates for the energy storage requirement. In this study, we reported the synthesis of graphitic nanofibers/three dimensional graphene (GNFs/3D graphene) hybrid nanostructure on highly porous nickel foam via thermal chemical vapor deposition (CVD) process. This hybrid nanostructure demonstrated to possess a large surface area and showed an excellent specific capacitance of 59.28 F g-1 at a current density of 1 A g-1, good cycle stability with capacitance retention of 90.66 % after 1000 cycles in 6 M KOH electrolyte. These results suggested that this hybrid nanostructure is a promising candidate which provides a simple and effective technique to prepare electrodes for supercapacitor.

參考文獻


[1] J. P. Holdren, "Energy and sustainability," Science, vol. 315, pp. 737-737, Feb 9 2007.
[3] J. S. Huang, B. G. Sumpter, and V. Meunier, "Theoretical model for nanoporous carbon supercapacitors," Angewandte Chemie-International Edition, vol. 47, pp. 520-524, 2008.
[4] M. Q. Zhao, X. F. Liu, Q. Zhang, G. L. Tian, J. Q. Huang, W. C. Zhu, and F. Wei, "Graphene/Single-Walled Carbon Nanotube Hybrids: One-Step Catalytic Growth and Applications for High-Rate Li-S Batteries," ACS Nano, vol. 6, pp. 10759-10769, Dec 2012.
[5] Z. Y. Yang, Y. F. Zhao, Q. Q. Xiao, Y. X. Zhang, L. Jing, Y. M. Yan, and K. N. Sun, "Controllable Growth of CNTs on Graphene as High-Performance Electrode Material for Supercapacitors," ACS Applied Materials & Interfaces, vol. 6, pp. 8497-8504, Jun 11 2014.
[6] P. Sharma, V. Bhalla, V. Dravid, G. Shekhawat, Jinsong-Wu, E. S. Prasad, and C. R. Suri, "Enhancing electrochemical detection on graphene oxide-CNT nanostructured electrodes using magneto-nanobioprobes," Scientific Reports, vol. 2, Nov 19 2012.

延伸閱讀