透過您的圖書館登入
IP:3.147.89.47
  • 學位論文

具穿隧介電層之金屬源極穿隧場效電晶體

Metal Source Tunnel Field-Effect Transistors with Tunneling Dielectrics

指導教授 : 連振炘 施君興
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


現今半導體工業蓬勃發展,電晶體隨著世代的微縮演進,使功率消耗的問題日益嚴重,金氧半場效電晶體因次臨界擺幅物理限制,不適於未來的低功率操作。穿隧電晶體因藉能帶間穿隧機制進行開關操作,成為綠能元件重要發展方向。本論文探討金屬源極穿隧場效電晶體其穿隧行為物理機制與相關元件設計。採用金屬取代原本半導體作為電晶體的源極,此一元件架構能同時結合能帶間穿隧和蕭特基能障穿隧兩種傳導機制,使穿隧電晶體突破元件導通電流不足的困境。其次,此研究引入源極與通道間的穿隧介電層,此一作法有助於能帶間穿隧效應在小閘極電壓時彰顯,強化穿隧電晶體的低次臨界擺幅特性。此一研究採用二維模擬軟體進行,在模擬分析中,以非局域性模型探討元件穿隧行為。研究結果顯示,具穿隧介電層之金屬源極穿隧電晶體其導通電流可有顯著提升,並維持極低的次臨界擺幅。

並列摘要


Tunnel field-effect transistor (TFET) is considered as an attractive candidate for future low-power applications because of its steep subthreshold slope. However, conventional TFET transistor suffers from a low on-state current. This thesis proposes a new metal source TFET to increase the on-state current by combining the band-to-band tunneling and Schottky barrier tunneling. Two-dimensional simulations with nonlocal models were performed to examine the physical mechanism and associated design. The results show that an additional tunneling dielectric between the source and the channel can be utilized along with the metal source to ensure a high on-state current while retaining an abrupt on-off switching of TFET devices.

參考文獻


[1] Donald A. Neamen, “Semiconductor Physics and Device”, 3rd Edition, McGRAW. HILL, 2003.
[2] International Technology Roadmap for Semiconductors, 2011 Edition.
[3] Toshiaki Tsuchiya, Yasuhiro Sato, and Masaaki Tomizawa, “Three Mechanisms Determining Short-Channel Effects in Fully-Depleted SOI MOSFET's”, IEEE Trans. Electron Devices, Vol.45, No.5, pp.1116-1121, 1998.
[4] Ben G. Streetman, and Sanjay Kumar Banerjee , “Solid State Electronic Devices”, 6th Edition, Pearson, pp.217-224, pp.299-311, 2006.
[5] Sebastian Anthony, “7nm, 5nm, 3nm: The new materials and transistors that will take us to the limits of Moore’s law,” Extreme Tech, 2013.

延伸閱讀