透過您的圖書館登入
IP:3.145.96.102
  • 學位論文

應用於雙向分離控制技術低功率靜態隨機存取記憶體之雙階段電荷分享機制

Two Step Charge Sharing Scheme for Low Power Static Random Access Memory with Dual-Split-Control Assist Technique

指導教授 : 張孟凡

摘要


由於靜態隨機存取記憶體具有快速存取的記憶功能,因此在電子產品中是一 個非常重要的電路。它的容量是影響整個系統速度的主要因素。為了達到大量存 取資料的需求,此記憶體在整個系統所佔的面積越來越大。因此,如何降低功率消耗是一個非常重要的議題。 為了降低靜態隨機存取記憶體的功率消耗,降低供給電壓是最直接且有效的方式,然而,靜態隨機存取記憶體操作在低電壓時將會面臨以下的問題:(1)於寫入操作時會導致寫入失敗(2)於讀取操作時會產生讀取擾動(3)於寫入操作時會產生半選擇擾動。先前的作品提出了一個創新的記憶胞搭配雙向分離控制技術,此作品架構是將字組線分成字組線L和字組線R,以及將接地端分成接地端L和接地端R。其操作特色為偽單邊寫入於兩相位中,單邊讀取於單相位中。此記憶胞藉由抬升接地端的電壓來改善讀取擾動和半選擇擾動的問題。然而,根據記憶胞矩陣的佈局以及資料格局的方式,分別會產生接地彈跳與抬升接地端電壓不穩定的問題。 針對接地彈跳的問題,我們採用前人提出的方式解決,稱之為陣列邊緣記憶體技術。針對另一個議題,此作品提出了雙階段電荷分享機制。根據不同的資料格局會使接地端所看到的負載有所不同,而為了達到低功耗的需求,採用電荷分享的方式,第一步驟先將電路的電壓重置,第二步驟會做第一次的電荷分享決定接地端的電壓,第三步驟則會去偵測此電壓的高低決定是否需要再做第二次的抬升,以達到較好的記憶胞性能。 透過六十五奈米互補式金氧半邏輯製程技術,建構出一容量為四千字元之創新記憶胞搭配雙向分離控制電路,藉由示波器的量測,此作品可達到的最低操作電壓為400毫伏特,此外,和沒有抬升接地端電壓的情況下做比較,最低操作電壓的改善為120毫伏特。

並列摘要


Static Random Access Memory (SRAM) is an important circuit in the electronic products owing to the function of high-speed memory. It’s capacity is the main reason for affecting the speed of systems. In order to meet the substantial requirements of stored data, it occupies more and more area in the systems. Hence, the power consumption of SRAM becomes an indispensable issue. To reduce power consumption of SRAM, lowering the supply voltage is a direct and effective way. Nevertheless, SRAM operating at low VDD would suffer from the following issue : (1) write failure in write operation (2) read disturb in read operation (3) half-select disturb in write operation. Previous work proposes a novel 6T cell with dual-split control (DSC) technique. The word-line (WL) of cell is divided into WLL and WLR. Also, the ground (CVSS) of cell is divided into CVSSL and CVSSR. The feature of cell is pseudo single-ended write with two phases and single-ended read with one phase. It can improve read disturb and half-select disturb by raising CVSS. However, according to the layout and data pattern of cell array, it suffers from ground bounce and the difficulty for raising CVSS. For ground bounce, we adopt the method proposed by pervious work which is called array-edge memory (AEM) technique. For the other issue, we propose two step charge sharing scheme. In accordance with the data pattern of cell array, loading of CVSS would be different. For the requirement of low power, we employ charge sharing approach. The first step is reset state. At the second step we do the first charge sharing to generate the voltage of CVSS. At the third step, we detect this voltage to decide whether it should be raised again to achieve better performance of cell. Based on 65nm CMOS logic process, we fabricate a 4Kb SRAM composed of 6T cell with DSC scheme. This work achieves VDDmin equal to 400mV through oscilloscope testing. In addition, VDDmin improvement is 120mV compared with no raising for CVSS.

參考文獻


[2] K. Zhang, et al., "Low-Power SRAMs in Nanoscale CMOS Technologies,"IEEE Trans. Electron Devices, vol. 55, pp. 145-151, Jan. 2008.
[3] Y.-C. Lai, et al., "Resilient Self-VDD-Tuning Scheme With Speed-Margining for Low-Power SRAM," IEEE J. Solid-State Circuits, vol. 44, pp. 2817-2823, Oct. 2009.
[6] Y. Wang, et al., "A 4.0 GHz 291 Mb Voltage-Scalable SRAM Design in a 32 nm High-k + Metal-Gate CMOS Technology With Integrated Power Management," IEEE J. Solid-State Circuits, vol. 45, pp. 103-110, Jan. 2010.
[7] M.-F. Chang, et al., "A differential data aware power-supplied (D2AP) 8T SRAM cell with expanded write/read stabilities for lower VDDmin applications," in VLSI Circuits, 2009 Symposium on, pp. 156-157, 2009.
[9] M. Qazi, et al., "A 512kb 8T SRAM Macro Operating Down to 0.57V with An AC-Coupled Sense Amplifier and Embedded Data-Retention-Voltage Sensor in 45nm SOI CMOS," ISSCC Dig. Tech. Papers, pp. 350-351, Feb. 2010.

延伸閱讀