透過您的圖書館登入
IP:3.145.178.106
  • 學位論文

鑽石銀基複材與基板接合之熱界面材料開發

Development of Thermal Interface Materials in the Joining of Diamond/Silver Composites with Substrates

指導教授 : 林樹均

摘要


本實驗以銀作為基材,添加微量活性元素鈦提升鑽石與金屬基材的界面潤濕性,並以水平爐管進行無壓真空液相燒結製備鑽石銀基複合材料。實驗中在鈦添加量為 1.5 at% 時,所得複材熱傳導值可達 788 W/m*K,熱膨脹係數落於與基板或半導體元件匹配的範圍內。經由添加銀鈦薄片於生胚上,並於燒結過程中在其上方放置一不銹鋼片,可使鑽石銀基複材表面粗糙度下降至 1.1 μm,適合作為後續接合基板之用,且複材熱傳導值達 749 W/m*K。 與商業用氮化鋁、矽、氧化鋁基板做接合,使用四種低熔點合金作為熱界面材料,包括市售低熔點合金 (Liquid Ultra)–Ga0.78In0.14Sn0.08,以及自行配置 Ga0.76Sn0.24、In0.63Ga0.37 與 Sn0.37In0.36Ga0.27 三種合金。在 In0.63Ga0.37 合金接合系統有最高的熱傳值,其矽基板接合模組之熱傳值可達 398 W/m*K;在熱循環測試方面,Sn0.37In0.36Ga0.27 合金系統有最佳耐熱循環表現,散熱模組經 1000 次室溫至 85 °C 的熱循環後,三種基板都還能維持約 80% 以上的熱傳值。

並列摘要


Minor-addition of Ti was added into matrix to improve the wettability between diamonds and Ag matrix in this study. Pressureless liquid phase sintering process was adopted for the fabrication of diamond/Ag composites. The optimum result achieved by using 300 μm diamonds with a diamond volume fraction of 60 vol%, composites with a high thermal conductivity of 788 W/m*K and CTE of 6.7 ppm/K can be achieved. Diamond composites fabricated by silver-flake sintering method with a stainless steel plate can reduce the surface roughness to 1.1 μm which is suitable for joining with commercial substrates and thermal conductivity of 749 W/m*K can be achieved. In this study, we used four different kinds of low melting point alloys (commercial Liquid Ultra Ga0.78In0.14Sn0.08, and homemade Ga0.76Sn0.24, In0.63Ga0.37, and Sn0.37In0.36Ga0.27) as thermal interface materials to join diamond composites with commercial substrates (aluminum nitride, silicon, sapphire). In the system of joining by In0.63Ga0.37, heat spreader joining with silicon can achieve highest thermal conductivity of 398 W/m*K. In thermal cycle tests carried out from 25 °C to 85 °C with 1000 cycles, the system of joining by Sn0.37In0.36Ga0.27 showed the best thermal performance, the groups of Sn0.37In0.36Ga0.27 can still maintain at least 80% of thermal conductivity.

參考文獻


[1] G. E. Moore, "Cramming more components onto integrated circuits (Reprinted from Electronics, pp. 114-117, April 19, 1965), Proceedings of the IEEE, 86 (1998) 82-85.
[2] E. Pop, "Energy Dissipation and Transport in Nanoscale Devices", Nano Research, 3 (2010) 147-169.
[3] R. Mahajan, C.-P. Chiu, and G. Chrysler, "Cooling a microprocessor chip", Proceedings of the Ieee, 94 (2006) 1476-1486.
[5] C. Zweben, "Advances in composite materials for thermal management in electronic packaging", JOM-Journal of the Minerals Metals & Materials Society, 50 (1998) 47-51.
[7] J. Barcena, J. Maudes, M. Vellvehi, X. Jorda, I. Obieta, C. Guraya, L. Bilbao, C. Jiménez, C. Merveille, and J. Coleto, "Innovative packaging solution for power and thermal management of wide-bandgap semiconductor devices in space applications", Acta Astronautica, 62 (2008) 422-430.

延伸閱讀