透過您的圖書館登入
IP:3.142.42.33
  • 學位論文

單一結構雙色電漿子奈米雷射之研究

Dual-Color Plasmonic Nanolasers in Single Nanostructures

指導教授 : 果尚志

摘要


半導體雷射在微小化的過程中,會遇到光學共振腔先天條件的限制,而無法將尺寸縮小於〖((λ)⁄(2n))〗^3,限制了光通訊產業的發展,科學家研究出許多突破繞射極限的方法,如光子晶體等等,但礙於技術及成本門檻,無法在產業界應用,2003年Stockman和Bergman提出了受激輻射引致表面電漿子放大(Surface Plasmon Amplification by Stimulated Emission of Radiation, SPASER),或簡稱電漿子雷射,這是一個全新的領域,不在使用光學共振腔,取而代替的是電漿子共振腔,利用金屬與介電質介面的次波長範圍,能夠有效的將光場侷限在幾個奈米的尺度,達到以電漿子模態共振所產生的雷射。 本論文主題為使用電漿輔助分子束磊晶系統成長的高品質的雙色雙核氮化銦鎵/氮化鎵奈米柱,並調控兩個氮化銦鎵核的能隙,使在單根奈米柱能夠同時輻射復合出兩種顏色的光,並與分子束磊晶系統成長的鋁膜做結合,鋁有著比銀更佳的穩定性,只會氧化表層幾奈米,在應用上能比銀膜更廣。而高光增益係數的氮化銦鎵奈米柱,搭配低損耗的磊晶成長單晶鋁膜是非常好的選擇。並驗證電漿子雷射獨特的自動調諧機制(autotuning mechanism),電漿子雷射輻射波長與共振腔長度相依性較小,可以在不改變電漿子共振腔的狀況下,同時兩個不同頻率的電漿子在相同的共振腔內達到雷射回饋機制。

並列摘要


Surface plasmon polaritons (SPPs) can confine the optical field into a deep subwavelength scale. In the wave propagation phenomena, the group velocity of SPP is greatly slowed down (large group index) due to the dispersion curve of surface plasmon. Moreover, the group index is wavelength dependent and can be related to the greatly enhanced modal gain and confinement factor. Recently, plasmonic nanolasers has been demonstrated that can break the three-dimensional (3D) optical diffraction limit. In this work, we have successfully realized the dual-color plasmonic nanolasers on a metal−insulator−semiconductor nanostructure platform, using single dual-core InGaN/GaN nanorods deposited on single crystalline epitaxial Al film with dual In compositions in the nanorod core. Different from conventional laser, plasmonic nanolaser can lase two coherent light in single cavities. Especially, dual-color lasing action is achieved via a unique “autotuning” mechanism based on the property of weak cavity size dependence inherent in plasmonic nanolasers

參考文獻


2. Hiroshi, A., Masahiro, K., Kazumasa, H. & Isamu, A. P-Type Conduction in Mg-Doped GaN Treated with Low-Energy Electron Beam Irradiation (LEEBI). Japanese Journal of Applied Physics 28, L2112 (1989).
3. Isamu Akasaki - Nobel Lecture: Fascinated Journeys into Blue Light. Nobelprize.org (2014).
4. Hiroshi Amano - Nobel Lecture: Growth of GaN on Sapphire by Low Temperature Deposited Buffer Layer and Realization of P-Type GaN by Mg-Doping Followed by LEEBI Treatment. Nobelprize.org (2014).
5. Shuji, N. & Takashi, M. High-Quality InGaN Films Grown on GaN Films. Japanese Journal of Applied Physics 31, L1457 (1992).
6. Shuji Nakamura - Nobel Lecture: Background Story of the Invention of Efficient Blue InGaN Light Emitting Diodes. Nobelprize.org (2014).

延伸閱讀