本實驗以二維磁光陷阱(2D Magneto-Optical Trap;2D MOT)作為核心,藉 以實現電磁引發透明(Electromagnetically Induced Transparency;EIT)以及未來偏 振糾纏光子對的產生。 由於 2D MOT 其中一軸的位能井近似於 0,因此原子團會沿此量子軸 (quantization axis)延伸而呈現橢球形。若將光子沿量子軸入射可增加光子與物質 交互作用的機率,並且由於此軸路徑上近乎無磁場梯度,在 EIT 與四波混頻 (Four Wave Mixing;FWM)時不需在意磁場所產生的量子退相干(quantum decoherence)。 我們的系統由兩台雷射及一台 tapered amplifier(TA)的架構組成,其中一台 雷射為外腔雷射,作為 master laser,另一台則是一般二極體雷射,作為 slave laser。 此次主要的目標在於穩定 MOT 以及 EIT 的量測,其中的原理參考了史丹 佛大學的 S. E. Harris 教授的文章 1,2,並選用 Rb87 直交架設 (right-angle setup, 即 coupling & probe 呈 90 度夾角) ,以便為後續 FWM 做準備。
In this thesis, we utilize 2D MOT (Magneto-Optical Trap) for realizing EIT (Electromagnetically Induced Transparency) and generating polarization-entangled photon pairs in the near future. The cold atoms may expand as ellipsoidal cloud due to the zero-line field which we consider as quantum axis in 2D MOT. The photon-atom interaction could be enhanced if the photons propagate in this direction. Besides, there is almost no magnetic field gradient on the quantum axis. As a result, we can neglect quantum decoherence in EIT and FWM (Four Wave Mixing). There are two lasers and a TA (tapered amplifier) in our system. One of them is ECDL (external cavity diode laser), as a master laser; another is a regular diode laser, as a slave. Our goals are MOT stabilization and EIT measurements. We consult the articles1,2 from professor S. E. Harris at Stanford before building the system, and chose Rb 87 right-angle setup in order to get fully entangled biphotons by FWM in the future.